Suppr超能文献

深度学习卷积神经网络在乳腺癌筛查中的应用。

Deep Convolutional Neural Networks for breast cancer screening.

机构信息

Laboratory of Computer Science and Mathematics and their Applications (LIMA), Faculty of science, University Chouaib Doukkali, El Jadida 24000, Morocco.

Laboratory of Computer Science and Mathematics and their Applications (LIMA), Faculty of science, University Chouaib Doukkali, El Jadida 24000, Morocco.

出版信息

Comput Methods Programs Biomed. 2018 Apr;157:19-30. doi: 10.1016/j.cmpb.2018.01.011. Epub 2018 Jan 11.

Abstract

BACKGROUND AND OBJECTIVE

Radiologists often have a hard time classifying mammography mass lesions which leads to unnecessary breast biopsies to remove suspicions and this ends up adding exorbitant expenses to an already burdened patient and health care system.

METHODS

In this paper we developed a Computer-aided Diagnosis (CAD) system based on deep Convolutional Neural Networks (CNN) that aims to help the radiologist classify mammography mass lesions. Deep learning usually requires large datasets to train networks of a certain depth from scratch. Transfer learning is an effective method to deal with relatively small datasets as in the case of medical images, although it can be tricky as we can easily start overfitting.

RESULTS

In this work, we explore the importance of transfer learning and we experimentally determine the best fine-tuning strategy to adopt when training a CNN model. We were able to successfully fine-tune some of the recent, most powerful CNNs and achieved better results compared to other state-of-the-art methods which classified the same public datasets. For instance we achieved 97.35% accuracy and 0.98 AUC on the DDSM database, 95.50% accuracy and 0.97 AUC on the INbreast database and 96.67% accuracy and 0.96 AUC on the BCDR database. Furthermore, after pre-processing and normalizing all the extracted Regions of Interest (ROIs) from the full mammograms, we merged all the datasets to build one large set of images and used it to fine-tune our CNNs. The CNN model which achieved the best results, a 98.94% accuracy, was used as a baseline to build the Breast Cancer Screening Framework. To evaluate the proposed CAD system and its efficiency to classify new images, we tested it on an independent database (MIAS) and got 98.23% accuracy and 0.99 AUC.

CONCLUSION

The results obtained demonstrate that the proposed framework is performant and can indeed be used to predict if the mass lesions are benign or malignant.

摘要

背景与目的

放射科医生在对乳腺钼靶肿块病变进行分类时常常感到困难,这导致了不必要的乳房活检,以去除疑虑,这最终给已经负担过重的患者和医疗保健系统增加了过高的费用。

方法

在本文中,我们开发了一种基于深度卷积神经网络(CNN)的计算机辅助诊断(CAD)系统,旨在帮助放射科医生对乳腺钼靶肿块病变进行分类。深度学习通常需要大型数据集来从零开始训练具有一定深度的网络。迁移学习是处理相对较小的医疗图像数据集的有效方法,尽管它可能很棘手,因为我们很容易开始过拟合。

结果

在这项工作中,我们探讨了迁移学习的重要性,并通过实验确定了在训练 CNN 模型时采用的最佳微调策略。我们能够成功地微调一些最新的、最强大的 CNN,并与分类相同公共数据集的其他最先进的方法相比,获得了更好的结果。例如,我们在 DDSM 数据库上实现了 97.35%的准确率和 0.98 AUC,在 INbreast 数据库上实现了 95.50%的准确率和 0.97 AUC,在 BCDR 数据库上实现了 96.67%的准确率和 0.96 AUC。此外,在对从全乳腺钼靶片中提取的所有感兴趣区域(ROI)进行预处理和归一化后,我们将所有数据集合并为一个大型图像集,并使用它来微调我们的 CNN。实现最佳结果的 CNN 模型,即 98.94%的准确率,被用作构建乳腺癌筛查框架的基线。为了评估所提出的 CAD 系统及其对新图像进行分类的效率,我们在一个独立的数据库(MIAS)上进行了测试,获得了 98.23%的准确率和 0.99 AUC。

结论

所获得的结果表明,所提出的框架表现良好,确实可以用于预测肿块病变是良性还是恶性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验