Suppr超能文献

神经元细胞死亡。

Neuronal Cell Death.

机构信息

Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom.

出版信息

Physiol Rev. 2018 Apr 1;98(2):813-880. doi: 10.1152/physrev.00011.2017.

Abstract

Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.

摘要

神经元细胞死亡在发育和病理学中广泛发生,这一点尤为重要,因为成年神经元的增殖或替代能力有限。过去,细胞死亡的概念很简单,因为只有两种或三种类型,所以我们只需要确定哪种类型与我们特定的病理学有关,然后阻止它。然而,我们现在知道,神经元死亡至少有十二种方式,阻断特定的细胞死亡机制可能无法阻止细胞死亡,而且非神经元细胞也会导致神经元死亡。我们在这里回顾了由内在和外在凋亡、胀亡、坏死性凋亡、副凋亡、铁死亡、sarmoptosis、自噬性细胞死亡、自溶、自噬、副凋亡、细胞焦亡、吞噬性细胞死亡和线粒体通透性转换引起的神经元死亡机制。接下来,我们探讨了神经元在发育过程中以及在轴突切断、异常细胞周期再进入、谷氨酸(兴奋毒性和氧化毒性)、失连神经元、聚集蛋白和未折叠蛋白反应、氧化剂、炎症和小胶质细胞诱导下的死亡机制。然后,我们重新评估了细胞死亡的形式发生在中风和阿尔茨海默病,这两种涉及神经元细胞死亡的最重要的病理学。我们还讨论了为什么确定涉及的神经元死亡类型如此困难,如果和为什么神经元死亡的机制很重要,死亡子程序之间的分子重叠和相互作用,以及这些多种重叠形式的神经元死亡的治疗意义。

相似文献

1
Neuronal Cell Death.
Physiol Rev. 2018 Apr 1;98(2):813-880. doi: 10.1152/physrev.00011.2017.
2
How neurons die in Alzheimer's disease: Implications for neuroinflammation.
Curr Opin Neurobiol. 2022 Aug;75:102575. doi: 10.1016/j.conb.2022.102575. Epub 2022 Jun 10.
6
Lactadherin/MFG-E8 is essential for microglia-mediated neuronal loss and phagoptosis induced by amyloid β.
J Neurochem. 2013 Aug;126(3):312-7. doi: 10.1111/jnc.12288. Epub 2013 May 22.
7
Microglial phagocytosis of live neurons.
Nat Rev Neurosci. 2014 Apr;15(4):209-16. doi: 10.1038/nrn3710.
8
Phagocytosis executes delayed neuronal death after focal brain ischemia.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):E4098-107. doi: 10.1073/pnas.1308679110. Epub 2013 Oct 7.
9
Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons.
Int J Mol Sci. 2021 Dec 14;22(24):13442. doi: 10.3390/ijms222413442.
10
Non-Canonical Cell Death Induced by p53.
Int J Mol Sci. 2016 Dec 9;17(12):2068. doi: 10.3390/ijms17122068.

引用本文的文献

2
The impact of brain network microstructural changes on upper limb mirror movements after stroke.
Front Neurol. 2025 Aug 6;16:1643870. doi: 10.3389/fneur.2025.1643870. eCollection 2025.
3
Ferroptosis and epilepsy: bidirectional pathogenic links and therapeutic implications.
Front Neurol. 2025 Jul 30;16:1635441. doi: 10.3389/fneur.2025.1635441. eCollection 2025.
4
Brain morphometry and chronic inflammation in Bangladeshi children growing up in extreme poverty.
Imaging Neurosci (Camb). 2024 Oct 16;2. doi: 10.1162/imag_a_00319. eCollection 2024.
5
Ferroptosis in central nervous system injuries: molecular mechanisms, diagnostic approaches, and therapeutic strategies.
Front Cell Neurosci. 2025 Jul 22;19:1593963. doi: 10.3389/fncel.2025.1593963. eCollection 2025.
8
The Regulatory Role of Non-Coding RNAs in Autophagy-Dependent Ischemia-Reperfusion Injury of the Brain.
Curr Issues Mol Biol. 2025 Jun 17;47(6):462. doi: 10.3390/cimb47060462.
9
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
10
Acupuncture for retinitis pigmentosa: a comprehensive review.
Int Ophthalmol. 2025 Jul 15;45(1):292. doi: 10.1007/s10792-025-03656-6.

本文引用的文献

1
Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase.
J Immunol. 2017 Jun 15;198(12):4792-4801. doi: 10.4049/jimmunol.1502532. Epub 2017 May 12.
2
Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.
Neuron. 2017 Mar 8;93(5):1015-1034. doi: 10.1016/j.neuron.2017.01.022.
3
Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.
Neuron. 2017 Mar 8;93(5):1066-1081.e8. doi: 10.1016/j.neuron.2017.02.001. Epub 2017 Feb 23.
4
Lipid peroxidation in cell death.
Biochem Biophys Res Commun. 2017 Jan 15;482(3):419-425. doi: 10.1016/j.bbrc.2016.10.086. Epub 2017 Feb 3.
6
PERK activation mitigates tau pathology and .
EMBO Mol Med. 2017 Mar;9(3):371-384. doi: 10.15252/emmm.201606664.
10
Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?
J Neurochem. 2017 Mar;140(5):703-717. doi: 10.1111/jnc.13935. Epub 2017 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验