Suppr超能文献

使用MAPS对X射线荧光数据进行定量分析。

Quantifying X-Ray Fluorescence Data Using MAPS.

作者信息

Nietzold Tara, West Bradley M, Stuckelberger Michael, Lai Barry, Vogt Stefan, Bertoni Mariana I

机构信息

School for Engineering of Matter, Transport, and Energy, Arizona State University.

School of Electrical, Computer, and Energy Engineering, Arizona State University.

出版信息

J Vis Exp. 2018 Feb 17(132):56042. doi: 10.3791/56042.

Abstract

The quantification of X-ray fluorescence (XRF) microscopy maps by fitting the raw spectra to a known standard is crucial for evaluating chemical composition and elemental distribution within a material. Synchrotron-based XRF has become an integral characterization technique for a variety of research topics, particularly due to its non-destructive nature and its high sensitivity. Today, synchrotrons can acquire fluorescence data at spatial resolutions well below a micron, allowing for the evaluation of compositional variations at the nanoscale. Through proper quantification, it is then possible to obtain an in-depth, high-resolution understanding of elemental segregation, stoichiometric relationships, and clustering behavior. This article explains how to use the MAPS fitting software developed by Argonne National Laboratory for the quantification of full 2-D XRF maps. We use as an example results from a Cu(In,Ga)Se2 solar cell, taken at the Advanced Photon Source beamline 2-ID-D at Argonne National Laboratory. We show the standard procedure for fitting raw data, demonstrate how to evaluate the quality of a fit and present the typical outputs generated by the program. In addition, we discuss in this manuscript certain software limitations and offer suggestions for how to further correct the data to be numerically accurate and representative of spatially resolved, elemental concentrations.

摘要

通过将原始光谱拟合到已知标准来对X射线荧光(XRF)显微镜图像进行定量分析,对于评估材料中的化学成分和元素分布至关重要。基于同步加速器的XRF已成为各种研究课题不可或缺的表征技术,特别是由于其无损性质和高灵敏度。如今,同步加速器能够以远低于微米的空间分辨率获取荧光数据,从而能够评估纳米尺度上的成分变化。通过适当的定量分析,进而有可能深入、高分辨率地了解元素偏析、化学计量关系和聚集行为。本文介绍了如何使用阿贡国家实验室开发的MAPS拟合软件对完整的二维XRF图像进行定量分析。我们以在阿贡国家实验室先进光子源2-ID-D光束线采集的铜铟镓硒(Cu(In,Ga)Se2)太阳能电池的结果为例。我们展示了拟合原始数据的标准程序,演示了如何评估拟合质量,并展示了该程序生成的典型输出。此外,我们在本手稿中讨论了某些软件限制,并就如何进一步校正数据以使其在数值上准确且能代表空间分辨的元素浓度提供了建议。

相似文献

1
Quantifying X-Ray Fluorescence Data Using MAPS.
J Vis Exp. 2018 Feb 17(132):56042. doi: 10.3791/56042.
2
X-ray fluorescence at nanoscale resolution for multicomponent layered structures: a solar cell case study.
J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):288-295. doi: 10.1107/S1600577516015721.
7
Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.
J Synchrotron Radiat. 2015 Jul;22(4):1096-105. doi: 10.1107/S1600577515009534. Epub 2015 Jun 27.
8
ROI-Finder: machine learning to guide region-of-interest scanning for X-ray fluorescence microscopy.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1495-1503. doi: 10.1107/S1600577522008876. Epub 2022 Oct 25.
9
Elemental imaging of trace elements in bone samples using micro and nano-X-ray fluorescence spectrometry.
Appl Radiat Isot. 2019 Jul;149:200-205. doi: 10.1016/j.apradiso.2019.04.033. Epub 2019 Apr 30.
10
Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques.
Methods Mol Biol. 2013;953:143-59. doi: 10.1007/978-1-62703-152-3_9.

引用本文的文献

1
Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria.
Metallomics. 2024 Oct 4;16(10). doi: 10.1093/mtomcs/mfae040.
2
ROI-Finder: machine learning to guide region-of-interest scanning for X-ray fluorescence microscopy.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1495-1503. doi: 10.1107/S1600577522008876. Epub 2022 Oct 25.
3
X-ray diffraction with micrometre spatial resolution for highly absorbing samples.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1407-1413. doi: 10.1107/S1600577522008025. Epub 2022 Oct 5.
5
X-ray fluorescence microscopy scanning of oocytes and eggs.
STAR Protoc. 2020 Dec 30;2(1):100247. doi: 10.1016/j.xpro.2020.100247. eCollection 2021 Mar 19.
6
PIN FORMED 2 Modulates the Transport of Arsenite in .
Plant Commun. 2019 Nov 21;1(3):100009. doi: 10.1016/j.xplc.2019.100009. eCollection 2020 May 11.
8
Localization of the Locus Coeruleus in the Mouse Brain.
J Vis Exp. 2019 Mar 7(145). doi: 10.3791/58652.

本文引用的文献

1
X-ray fluorescence at nanoscale resolution for multicomponent layered structures: a solar cell case study.
J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):288-295. doi: 10.1107/S1600577516015721.
2
3
Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15676-80. doi: 10.1073/pnas.1001469107. Epub 2010 Aug 18.
4
Secondary fluorescence enhancement in confocal X-ray microscopy analysis.
Anal Chem. 2009 Jun 15;81(12):4946-54. doi: 10.1021/ac900688n.
5
X-ray fluorescence microprobe imaging in biology and medicine.
J Cell Biochem. 2006 Dec 15;99(6):1489-502. doi: 10.1002/jcb.21047.
6
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.
J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41. doi: 10.1107/S0909049505012719. Epub 2005 Jun 15.
7
Elemental and redox analysis of single bacterial cells by x-ray microbeam analysis.
Science. 2004 Oct 22;306(5696):686-7. doi: 10.1126/science.1103524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验