Suppr超能文献

在复发性胶质母细胞瘤患者中进行基于 RNA 干扰的球形核酸的首次人体 0 期临床研究。

A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma.

机构信息

Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.

International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA.

出版信息

Sci Transl Med. 2021 Mar 10;13(584). doi: 10.1126/scitranslmed.abb3945.

Abstract

Glioblastoma (GBM) is one of the most difficult cancers to effectively treat, in part because of the lack of precision therapies and limited therapeutic access to intracranial tumor sites due to the presence of the blood-brain and blood-tumor barriers. We have developed a precision medicine approach for GBM treatment that involves the use of brain-penetrant RNA interference-based spherical nucleic acids (SNAs), which consist of gold nanoparticle cores covalently conjugated with radially oriented and densely packed small interfering RNA (siRNA) oligonucleotides. On the basis of previous preclinical evaluation, we conducted toxicology and toxicokinetic studies in nonhuman primates and a single-arm, open-label phase 0 first-in-human trial (NCT03020017) to determine safety, pharmacokinetics, intratumoral accumulation and gene-suppressive activity of systemically administered SNAs carrying siRNA specific for the GBM oncogene Bcl2Like12 (Bcl2L12). Patients with recurrent GBM were treated with intravenous administration of siBcl2L12-SNAs (drug moniker: NU-0129), at a dose corresponding to 1/50th of the no-observed-adverse-event level, followed by tumor resection. Safety assessment revealed no grade 4 or 5 treatment-related toxicities. Inductively coupled plasma mass spectrometry, x-ray fluorescence microscopy, and silver staining of resected GBM tissue demonstrated that intravenously administered SNAs reached patient tumors, with gold enrichment observed in the tumor-associated endothelium, macrophages, and tumor cells. NU-0129 uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein expression, as indicated by comparison of matched primary tumor and NU-0129-treated recurrent tumor. Our results establish SNA nanoconjugates as a potential brain-penetrant precision medicine approach for the systemic treatment of GBM.

摘要

胶质母细胞瘤(GBM)是最难有效治疗的癌症之一,部分原因是缺乏精准治疗方法,以及由于血脑和血肿瘤屏障的存在,颅内肿瘤部位的治疗途径有限。我们开发了一种用于 GBM 治疗的精准医疗方法,该方法涉及使用具有脑穿透性的基于 RNA 干扰的球形核酸(SNA),其由金纳米颗粒核心共价连接具有径向定向和密集排列的小干扰 RNA(siRNA)寡核苷酸组成。基于之前的临床前评估,我们在非人类灵长类动物中进行了毒理学和毒代动力学研究,并进行了一项单臂、开放标签的 0 期首次人体试验(NCT03020017),以确定全身给予针对 GBM 癌基因 Bcl2Like12(Bcl2L12)的 siRNA 的 SNA 的安全性、药代动力学、肿瘤内积累和基因抑制活性。复发性 GBM 患者接受静脉注射 siBcl2L12-SNA(药物代号:NU-0129)治疗,剂量相当于未观察到不良事件水平的 1/50,随后进行肿瘤切除。安全性评估显示无 4 级或 5 级与治疗相关的毒性。电感耦合等离子体质谱、X 射线荧光显微镜和切除的 GBM 组织的银染显示,静脉给予的 SNA 到达患者肿瘤,在肿瘤相关的内皮细胞、巨噬细胞和肿瘤细胞中观察到金富集。NU-0129 进入神经胶质瘤细胞的摄取与肿瘤相关的 Bcl2L12 蛋白表达减少相关,这可以通过比较匹配的原发性肿瘤和 NU-0129 治疗的复发性肿瘤来证实。我们的结果确立了 SNA 纳米复合物作为一种用于 GBM 系统治疗的潜在脑穿透性精准医疗方法。

相似文献

2
Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.
Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.
3
Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma.
Int J Nanomedicine. 2020 Apr 23;15:2809-2828. doi: 10.2147/IJN.S241055. eCollection 2020.
4
Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.
6
miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.
Genes Dev. 2015 Apr 1;29(7):732-45. doi: 10.1101/gad.257394.114.
7
Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside.
Cancers (Basel). 2022 Mar 23;14(7):1615. doi: 10.3390/cancers14071615.
8
In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
Small. 2023 Jun;19(24):e2300097. doi: 10.1002/smll.202300097. Epub 2023 Mar 11.
9
RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials.
Life Sci. 2017 Nov 1;188:26-36. doi: 10.1016/j.lfs.2017.08.027. Epub 2017 Aug 31.

引用本文的文献

1
Evolving therapeutic strategies in glioblastoma: traditional approaches and novel interventions.
3 Biotech. 2025 Sep;15(9):318. doi: 10.1007/s13205-025-04493-1. Epub 2025 Aug 28.
3
Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects.
Int J Mol Sci. 2025 Jul 11;26(14):6687. doi: 10.3390/ijms26146687.
4
Aptamer-mediated delivery of therapeutic oligonucleotides in glioblastoma.
Transl Oncol. 2025 Jul 26;60:102485. doi: 10.1016/j.tranon.2025.102485.
6
Nanoparticles for Glioblastoma Treatment.
Pharmaceutics. 2025 May 23;17(6):688. doi: 10.3390/pharmaceutics17060688.
7
Nanotechnology in brain cancer treatment: The role of gold nanoparticles as therapeutic enhancers.
Ibrain. 2025 May 10;11(2):119-145. doi: 10.1002/ibra.12198. eCollection 2025 Summer.
8
Harnessing the Power of Nanocarriers to Exploit the Tumor Microenvironment for Enhanced Cancer Therapy.
Pharmaceuticals (Basel). 2025 May 19;18(5):746. doi: 10.3390/ph18050746.
9
Targeting the glioblastoma resection margin with locoregional nanotechnologies.
Nat Rev Clin Oncol. 2025 May 14. doi: 10.1038/s41571-025-01020-2.
10
Blueprints for Better Drugs: The Structural Revolution in Nanomedicine.
ACS Nano. 2025 May 27;19(20):18889-18901. doi: 10.1021/acsnano.5c06380. Epub 2025 May 13.

本文引用的文献

2
Longitudinal molecular trajectories of diffuse glioma in adults.
Nature. 2019 Dec;576(7785):112-120. doi: 10.1038/s41586-019-1775-1. Epub 2019 Nov 20.
3
Iron as a Central Player and Promising Target in Cancer Progression.
Int J Mol Sci. 2019 Jan 11;20(2):273. doi: 10.3390/ijms20020273.
4
Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance.
Curr Med Chem. 2019;26(34):6282-6303. doi: 10.2174/0929867325666180403141554.
5
Quantifying X-Ray Fluorescence Data Using MAPS.
J Vis Exp. 2018 Feb 17(132):56042. doi: 10.3791/56042.
7
Lomustine and Bevacizumab in Progressive Glioblastoma.
N Engl J Med. 2017 Nov 16;377(20):1954-1963. doi: 10.1056/NEJMoa1707358.
8
Glioblastoma targeted therapy: updated approaches from recent biological insights.
Ann Oncol. 2017 Jul 1;28(7):1457-1472. doi: 10.1093/annonc/mdx106.
9
Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验