Suppr超能文献

通过机器学习结合分子性质基描述符和指纹提高血脑屏障通透性的预测。

Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

机构信息

Center for Pharmaceutical Innovation and Research, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.

Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.

出版信息

AAPS J. 2018 Mar 21;20(3):54. doi: 10.1208/s12248-018-0215-8.

Abstract

Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

摘要

血脑屏障(BBB)通透性是决定化合物是否能有效进入大脑的关键性质,对于以大脑为靶点的药物发现来说,这是必须要考虑的一个性质。目前已经有几种计算方法被用于预测 BBB 通透性,其中支持向量机(SVM)作为一种基于核的机器学习方法,在该领域得到了广泛应用。对于 SVM 的训练和预测,化合物的特征是由分子描述符来表示的。一些 SVM 模型是基于使用基于分子性质的描述符(包括 1D、2D 和 3D 描述符)或基于片段的描述符(也称为分子指纹)。描述符的选择对于 SVM 模型的性能至关重要。在这项研究中,我们旨在通过结合基于分子性质描述符和指纹的所有特征,开发一种普遍适用的新 SVM 模型,以提高对 BBB 通透性预测的准确性。结果表明,与目前可用的 BBB 通透性预测模型相比,我们的 SVM 模型具有更高的准确性。

相似文献

2
In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods.
ChemMedChem. 2018 Oct 22;13(20):2189-2201. doi: 10.1002/cmdc.201800533. Epub 2018 Sep 21.
3
A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction.
Biomed Res Int. 2015;2015:292683. doi: 10.1155/2015/292683. Epub 2015 Oct 4.
5
New predictive models for blood-brain barrier permeability of drug-like molecules.
Pharm Res. 2008 Aug;25(8):1836-45. doi: 10.1007/s11095-008-9584-5. Epub 2008 Apr 16.
7
Prediction of the Blood-Brain Barrier (BBB) Permeability of Chemicals Based on Machine-Learning and Ensemble Methods.
Chem Res Toxicol. 2021 Jun 21;34(6):1456-1467. doi: 10.1021/acs.chemrestox.0c00343. Epub 2021 May 28.
8
Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation.
Mol Inform. 2024 Sep;43(9):e202300327. doi: 10.1002/minf.202300327. Epub 2024 Jun 12.
9
Machine learning based dynamic consensus model for predicting blood-brain barrier permeability.
Comput Biol Med. 2023 Jun;160:106984. doi: 10.1016/j.compbiomed.2023.106984. Epub 2023 Apr 28.
10
DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy.
Front Neurosci. 2022 May 3;16:858126. doi: 10.3389/fnins.2022.858126. eCollection 2022.

引用本文的文献

1
A Classification-Based Blood-Brain Barrier Model: A Comparative Approach.
Pharmaceuticals (Basel). 2025 May 22;18(6):773. doi: 10.3390/ph18060773.
2
Applications of artificial intelligence in drug discovery for neurological diseases.
Neurotherapeutics. 2025 Jul;22(4):e00624. doi: 10.1016/j.neurot.2025.e00624. Epub 2025 Jun 17.
5
Computational Modeling of Pharmaceuticals with an Emphasis on Crossing the Blood-Brain Barrier.
Pharmaceuticals (Basel). 2025 Feb 6;18(2):217. doi: 10.3390/ph18020217.
9
Improving glioma drug delivery: A multifaceted approach for glioma drug development.
Pharmacol Res. 2024 Oct;208:107390. doi: 10.1016/j.phrs.2024.107390. Epub 2024 Sep 2.
10
Non-animal models for blood-brain barrier permeability evaluation of drug-like compounds.
Sci Rep. 2024 Apr 17;14(1):8908. doi: 10.1038/s41598-024-59734-9.

本文引用的文献

1
Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review.
Eur J Pharm Biopharm. 2014 Aug;87(3):409-32. doi: 10.1016/j.ejpb.2014.03.012. Epub 2014 Mar 28.
2
Strategies to assess blood-brain barrier penetration.
Expert Opin Drug Discov. 2008 Jun;3(6):677-87. doi: 10.1517/17460441.3.6.677.
4
Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB.
Expert Opin Drug Deliv. 2013 Jul;10(7):927-55. doi: 10.1517/17425247.2013.762354. Epub 2013 Jan 21.
5
Improving the prediction of drug disposition in the brain.
Expert Opin Drug Metab Toxicol. 2013 Apr;9(4):473-86. doi: 10.1517/17425255.2013.754423. Epub 2013 Jan 8.
6
Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine.
Eur J Pharm Sci. 2012 Sep 29;47(2):421-9. doi: 10.1016/j.ejps.2012.06.021. Epub 2012 Jul 6.
7
PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.
J Comput Chem. 2011 May;32(7):1466-74. doi: 10.1002/jcc.21707. Epub 2010 Dec 17.
8
QSAR analysis of blood-brain distribution: the influence of plasma and brain tissue binding.
J Pharm Sci. 2011 Jun;100(6):2147-60. doi: 10.1002/jps.22442. Epub 2011 Jan 26.
9
Estimation of ADME properties with substructure pattern recognition.
J Chem Inf Model. 2010 Jun 28;50(6):1034-41. doi: 10.1021/ci100104j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验