Suppr超能文献

利用大语言模型和机器学习预测分子的血脑屏障通透性。

Predicting blood-brain barrier permeability of molecules with a large language model and machine learning.

机构信息

NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, USA.

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

出版信息

Sci Rep. 2024 Jul 9;14(1):15844. doi: 10.1038/s41598-024-66897-y.

Abstract

Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.

摘要

使用新型人工智能平台预测小分子化合物的血脑屏障(BBB)通透性对于药物发现是必要的。机器学习和人工智能(AI)工具上的大型语言模型提高了新药物开发的准确性和缩短了时间。这项研究的主要目标是开发人工智能(AI)计算模型和新的深度学习架构,以预测分子是否能够穿透人类血脑屏障(BBB)。中国医科大学附属医院(CMUH)天然产物研究实验室(NPRL)验证了计算和体外(实验)结果。基于变压器的 MegaMolBART 被用作简化分子输入线条目系统(SMILES)编码器,XGBoost 分类器作为一种计算方法来检查分子是否可以穿过 BBB。我们使用 Morgan 或圆形指纹将 Morgan 算法应用于一组原子不变量作为基线编码器,也使用 XGBoost 分类器来比较结果。使用三维(3D)人 BBB 球体(人脑微血管内皮细胞、脑血管周细胞和星形胶质细胞)在体外评估 BBB 通透性。使用多个 BBB 数据库,最终的计算变压器和 XGBoost 模型在保留测试数据集上的接收器操作特征曲线下面积达到 0.88。替莫唑胺(TMZ)和 NPRL 中随机选择的 21 种 BBB 通透性化合物(预测分数=1,指示 BBB 通透性)穿透了人 BBB 球体细胞。没有证据表明阿魏酸或五种 BBB 不可渗透的化合物(预测分数<1.29423E-05,指定穿过人 BBB 的化合物)可以穿透 BBB 球体细胞。我们对体外实验的验证表明,在 BBB 模型中小分子渗透的计算预测是准确的。基于变压器的模型,如 MegaMolBART,利用分子的 SMILES 表示,在新药发现应用中具有很大的前景。这些模型有可能加速开发针对中枢神经系统疾病的新型靶向治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de3/11233737/c3712547722f/41598_2024_66897_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验