Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
Departamento de Medicina Intensiva, Facultad de Medicina, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt A):2010-2020. doi: 10.1016/j.bbadis.2018.03.019. Epub 2018 Mar 23.
Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2 mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions.
氧化应激会影响神经元的存活和功能。因此,神经元拥有复杂且高度调控的机制来应对氧化变化。这种抗氧化机制的失调与广泛的神经退行性疾病有关。因此,我们评估了 2 个月和 6 个月大的杂合型锰超氧化物歧化酶敲除小鼠(SOD2 小鼠)的信号转导改变、突触特性和行为表现。我们发现,它们较低的抗氧化能力会直接导致蛋白质、脂质和 DNA 的氧化损伤。然而,只有 6 个月大的杂合型敲除小鼠表现出行为障碍。另一方面,突触可塑性、突触强度和 NMDA 受体(NMDAR)依赖性突触后电位呈年龄依赖性下降。我们还分析了 NMDAR 亚基 GluN2B 的磷酸化状态。我们发现,虽然酪氨酸 1472 位点磷酸化的 GluN2B(突触形式)水平保持不变,但检测到酪氨酸 1336 位点磷酸化的 GluN2B(突触外形式)水平升高,表明 GluN2B 的突触外/突触比值发生改变。此外,我们发现与 p-1472 去磷酸化相关的两种磷酸酶(纹状体丰富的蛋白酪氨酸磷酸酶(STEP)和染色体 10 缺失的磷酸酶和张力蛋白同源物(PTEN))的水平升高。此外,我们发现突触刺激激活的主要转录因子 p-CREB 的水平降低。综上所述,我们描述了在氧化应激条件下,谷氨酸能突触发生改变的机制。我们的研究结果揭示了在 NMDAR 下游信号转导改变的情况下新的潜在治疗靶点。这项工作也有助于我们理解神经病理学条件下突触形成、学习和记忆等过程。