Suppr超能文献

描述高度动态构象状态:以 RNA 聚合酶-启动子开放复合物中的转录泡为例。

Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

出版信息

J Chem Phys. 2018 Mar 28;148(12):123315. doi: 10.1063/1.5004606.

Abstract

Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.

摘要

生物大分子通过结构变化执行复杂的功能。为了了解它们的作用机制,必须对每个步骤的结构进行表征。虽然经典的结构生物学技术允许对酶循环中的几个“结构快照”进行表征(通常是稳定构象),但它们不能涵盖集合中的所有(通常是快速相互转换的)结构,每个结构都可能发挥重要的功能作用。最近,有几个小组已经证明,通过使用单分子Förster 共振能量转移(smFRET)测量不同残基对之间的多个距离,并将其用作混合/综合结构建模的约束,可以解决溶液中不同构象的结构。然而,这种方法在构象动力学比技术的时间分辨率更快的情况下受到限制。在这项研究中,我们将阐明亚毫秒构象动力学的现有工具与混合/综合结构建模相结合,以研究细菌 RNA 聚合酶-启动子开放复合物(RPo)中转录泡的构象状态。我们测量了不同标记的 lacCONS 启动子 dsDNA 构建体的微秒交替激光激发-smFRET。我们结合了突发方差分析、逐光子隐马尔可夫建模以及 FRET 约束定位和筛选方法,以识别 RPo 的两种构象状态。一种构象状态的实验推导距离与已知的细菌 RPo 晶体结构匹配。另一种构象状态的实验推导距离具有卷曲 RPo 的特征。这些发现支持了这样的假设,即转录泡中的亚毫秒动力学负责转录起始位点的选择。

相似文献

3
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
4
Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes.
Nucleic Acids Res. 2018 Jan 25;46(2):677-688. doi: 10.1093/nar/gkx1146.
5
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.
6
Structural organization of the RNA polymerase-promoter open complex.
Cell. 2000 Jun 9;101(6):601-11. doi: 10.1016/s0092-8674(00)80872-7.
7
Structure of a bacterial RNA polymerase holoenzyme open promoter complex.
Elife. 2015 Sep 8;4:e08504. doi: 10.7554/eLife.08504.
8
How to switch the motor on: RNA polymerase initiation steps at the single-molecule level.
Protein Sci. 2017 Jul;26(7):1303-1313. doi: 10.1002/pro.3183. Epub 2017 May 12.

引用本文的文献

1
Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins.
Nat Methods. 2023 Apr;20(4):523-535. doi: 10.1038/s41592-023-01807-0. Epub 2023 Mar 27.
2
Structural and dynamic insights into α-synuclein dimer conformations.
Structure. 2023 Apr 6;31(4):411-423.e6. doi: 10.1016/j.str.2023.01.011. Epub 2023 Feb 20.
3
Single-photon smFRET. I: Theory and conceptual basis.
Biophys Rep (N Y). 2022 Dec 2;3(1):100089. doi: 10.1016/j.bpr.2022.100089. eCollection 2023 Mar 8.
4
Single-photon smFRET. III. Application to pulsed illumination.
Biophys Rep (N Y). 2022 Nov 25;2(4):100088. doi: 10.1016/j.bpr.2022.100088. eCollection 2022 Dec 14.
5
Identification and quantification of within-burst dynamics in singly labeled single-molecule fluorescence lifetime experiments.
Biophys Rep (N Y). 2022 Sep 14;2(3). doi: 10.1016/j.bpr.2022.100071. Epub 2022 Aug 17.
6
Multi-parameter photon-by-photon hidden Markov modeling.
Nat Commun. 2022 Feb 22;13(1):1000. doi: 10.1038/s41467-022-28632-x.
7
The NEOtrap - en route with a new single-molecule technique.
iScience. 2021 Sep 25;24(10):103007. doi: 10.1016/j.isci.2021.103007. eCollection 2021 Oct 22.
8
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.
9
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.
10
FRETboard: Semisupervised classification of FRET traces.
Biophys J. 2021 Aug 17;120(16):3253-3260. doi: 10.1016/j.bpj.2021.06.030. Epub 2021 Jul 6.

本文引用的文献

2
Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.
PLoS One. 2017 Apr 18;12(4):e0175766. doi: 10.1371/journal.pone.0175766. eCollection 2017.
3
Different types of pausing modes during transcription initiation.
Transcription. 2017 Aug 8;8(4):242-253. doi: 10.1080/21541264.2017.1308853. Epub 2017 Mar 23.
4
Photon-by-Photon Hidden Markov Model Analysis for Microsecond Single-Molecule FRET Kinetics.
J Phys Chem B. 2016 Dec 29;120(51):13065-13075. doi: 10.1021/acs.jpcb.6b10726. Epub 2016 Dec 15.
5
Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems.
Curr Opin Struct Biol. 2016 Oct;40:163-185. doi: 10.1016/j.sbi.2016.11.012. Epub 2016 Dec 7.
6
Multidomain structure and correlated dynamics determined by self-consistent FRET networks.
Nat Methods. 2017 Feb;14(2):174-180. doi: 10.1038/nmeth.4081. Epub 2016 Dec 5.
7
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6562-E6571. doi: 10.1073/pnas.1605038113. Epub 2016 Oct 11.
8
FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.
PLoS One. 2016 Aug 17;11(8):e0160716. doi: 10.1371/journal.pone.0160716. eCollection 2016.
9
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):E2899-905. doi: 10.1073/pnas.1603271113. Epub 2016 May 9.
10
Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1787-95. doi: 10.1073/pnas.1522159113. Epub 2016 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验