Suppr超能文献

基于无标记定量蛋白质组分析的靶向蛋白质组学揭示了从健康到牙周病的转变特征。

Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease.

机构信息

From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden;

§Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland.

出版信息

Mol Cell Proteomics. 2018 Jul;17(7):1392-1409. doi: 10.1074/mcp.RA118.000718. Epub 2018 Apr 2.

Abstract

Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva ( = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort ( = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.

摘要

牙周病是全球最普遍但很大程度上无声的慢性疾病之一。它们影响牙齿支持组织,对生活质量有多种影响。由于缺乏适当的分子诊断方法,早期诊断仍然具有挑战性。唾液提供了一种非侵入性可收集的临床相关生物标志物的储存库,如果有效地利用,它可以促进早期诊断和监测正在进行的疾病。尽管最近通过发现蛋白质组学列出了几种新的蛋白质标记物,但由于缺乏允许在大样本中快速、准确和同时定量多种蛋白质的验证平台,它们的常规诊断应用受到阻碍。在这里,我们进行了两个蛋白质组学平台的流水线研究;首先,我们应用开放式标签免费定量 (LFQ) 蛋白质组学进行唾液中的发现(= 67 例,包括健康、牙龈炎和牙周炎个体),然后在独立队列中进行选择反应监测 (SRM) - 靶向蛋白质组学验证(= 82 例)。LFQ 平台导致发现了 119 种在健康和疾病之间至少有 2 倍显著差异的蛋白质。随后 SRM 平台选择的 65 种蛋白质包括从 LFQ 数据中显著富集的过程中衍生的 50 种功能相关蛋白质、从文献挖掘中获得的 11 种蛋白质和 4 种管家蛋白。其中,60 种是可重复定量的蛋白质(成功率为 92%),代表 143 种肽。机器学习建模导致一组五个具有高预测价值的牙周病蛋白的缩小面板,最大接收者操作曲线下面积 >0.97(疾病中更高:基质金属蛋白酶-9、Ras 相关蛋白-1、肌动蛋白相关蛋白 2/3 复合物亚基 5;疾病中更低:簇蛋白、恶性脑肿瘤 1 缺失)。该面板丰富了用于诊断测定开发的可信临床生物标志物候选物池。然而,这项研究为牙周病诊断领域带来的飞跃是生物标志物发现-验证管道的应用,它可以用于进一步队列的验证。

相似文献

4
Label-Free Quantitative Proteomics versus Antibody-Based Assays to Measure Neutrophil-Derived Enzymes in Saliva.
Proteomics Clin Appl. 2020 May;14(3):e1900050. doi: 10.1002/prca.201900050. Epub 2020 Jan 7.
5
Label-free plasma proteomics for the identification of the putative biomarkers of oral squamous cell carcinoma.
J Proteomics. 2022 May 15;259:104541. doi: 10.1016/j.jprot.2022.104541. Epub 2022 Feb 26.
7
Identification and Validation of a Salivary Protein Panel to Detect Heart Failure Early.
Theranostics. 2017 Sep 26;7(18):4350-4358. doi: 10.7150/thno.21727. eCollection 2017.
8
Proteomic analysis of whole saliva in chronic periodontitis.
J Proteomics. 2020 Feb 20;213:103602. doi: 10.1016/j.jprot.2019.103602. Epub 2019 Dec 4.
9
Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers.
Methods Mol Biol. 2023;2596:147-167. doi: 10.1007/978-1-0716-2831-7_12.
10
Saliva as a diagnostic tool for periodontal disease: current state and future directions.
Periodontol 2000. 2009;50:52-64. doi: 10.1111/j.1600-0757.2008.00288.x.

引用本文的文献

4
Characterisation of the periodontal proteome in gingival crevicular fluid and saliva using SWATH-MS.
Front Cell Infect Microbiol. 2025 May 2;15:1576906. doi: 10.3389/fcimb.2025.1576906. eCollection 2025.
6
Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities.
J Innate Immun. 2025;17(1):211-225. doi: 10.1159/000542531. Epub 2025 Mar 7.
7
Clinical Response Characteristics of Salivary Proteins in the Management Strategy of Diabetes-Associated Periodontitis.
J Proteome Res. 2025 Mar 7;24(3):1161-1179. doi: 10.1021/acs.jproteome.4c00701. Epub 2025 Feb 26.
8
Variability of salivary analytes under daily conditions and their implications for periodontitis biomarkers.
Front Dent Med. 2024 Mar 18;5:1369186. doi: 10.3389/fdmed.2024.1369186. eCollection 2024.
9
Population Proteomics: A Tool to Gain Insights Into the Inflamed Periodontium.
Proteomics. 2025 Jan;25(1-2):e202400055. doi: 10.1002/pmic.202400055. Epub 2024 Dec 30.
10
Diagnostic Accuracy of Novel Protein Biomarkers in Saliva to Detect Periodontitis Using Untargeted 'SWATH' Mass Spectrometry.
J Clin Periodontol. 2025 Feb;52(2):199-214. doi: 10.1111/jcpe.14103. Epub 2024 Dec 27.

本文引用的文献

2
Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa.
PLoS Pathog. 2017 May 10;13(5):e1006392. doi: 10.1371/journal.ppat.1006392. eCollection 2017 May.
3
Contribution of proteomics to our understanding of periodontal inflammation.
Proteomics. 2017 Feb;17(3-4). doi: 10.1002/pmic.201500518.
4
Applications and Developments in Targeted Proteomics: From SRM to DIA/SWATH.
Proteomics. 2016 Aug;16(15-16):2065-7. doi: 10.1002/pmic.201600203.
5
Multiplexed panel of precisely quantified salivary proteins for biomarker assessment.
Proteomics. 2017 Mar;17(6). doi: 10.1002/pmic.201600230. Epub 2016 Oct 19.
6
Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome.
Cell. 2016 Jul 28;166(3):766-778. doi: 10.1016/j.cell.2016.06.041. Epub 2016 Jul 21.
7
Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome.
Genome Med. 2016 Apr 21;8(1):44. doi: 10.1186/s13073-016-0293-0.
8
Periodontitis Increases the Risk of a First Myocardial Infarction: A Report From the PAROKRANK Study.
Circulation. 2016 Feb 9;133(6):576-83. doi: 10.1161/CIRCULATIONAHA.115.020324. Epub 2016 Jan 13.
9
A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva.
Proteomics. 2016 Jan;16(1):159-73. doi: 10.1002/pmic.201500224. Epub 2015 Dec 15.
10
2016 update of the PRIDE database and its related tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56. doi: 10.1093/nar/gkv1145. Epub 2015 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验