Seligmann Hervé
Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; The National Natural History Collections, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel.
Biosystems. 2018 May;167:33-46. doi: 10.1016/j.biosystems.2018.03.002. Epub 2018 Apr 3.
Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections.
遗传密码主要通过重新分配标点密码子、起始密码子和终止密码子来进化。先前的分析假设未定义的氨基酸翻译终止密码子,结果显示核遗传密码和线粒体遗传密码之间存在更大的差异。在这里,三种独立的方法得出了在核遗传密码和线粒体遗传密码分化时哪些氨基酸翻译终止密码子的结论:(a) 无序列比对的遗传密码比较,在终止密码子处插入不同的氨基酸;(b) 基于序列比对的对从非编码线粒体序列翻译而来的假设肽段的blast分析,在终止密码子处插入不同的氨基酸;(c) 蛋白质组学数据中终止密码子处氨基酸插入的偏差。因此,短期蛋白质进化模型可以重建长期遗传密码进化。线粒体通过密码子 - 反密码子错配(近同源tRNA)将终止密码子重新分配给原本在终止密码子处插入的氨基酸。因此,双重功能(翻译终止和通过密码子 - 反密码子错配进行翻译)先于线粒体将终止密码子重新分配给氨基酸。终止密码子的模糊性增加了编码信息,补偿了细胞内线粒体基因组的减少。线粒体密码子重新分配可能会预防病毒感染。