Suppr超能文献

基于结构磁共振和 FDG-PET 图像的阿尔茨海默病早期诊断的多模态和多尺度深度神经网络。

Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

机构信息

School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada.

出版信息

Sci Rep. 2018 Apr 9;8(1):5697. doi: 10.1038/s41598-018-22871-z.

Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,基于病理生理学的疾病生物标志物可能能够为疾病的诊断和分期提供客观的衡量标准。从 MRI 获得的神经影像学扫描和 FDG-PET 获得的代谢图像为活体大脑的结构和功能(葡萄糖代谢)提供了体内测量。假设结合提供互补信息的多种不同成像方式可能有助于提高 AD 的早期诊断。在本文中,我们提出了一种新的基于深度学习的框架,利用多模态和多尺度深度神经网络来区分 AD 患者。我们的方法在识别将在转换前 3 年内转化为 AD 的轻度认知障碍(MCI)个体方面的准确率为 82.4%(1-3 年内转换的综合准确率为 86.4%),在分类具有可能 AD 临床诊断的个体方面的灵敏度为 94.23%,在分类非痴呆对照者方面的特异性为 86.3%,优于已发表文献中的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/a0c12e356814/41598_2018_22871_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验