Suppr超能文献

叶酸对神经工程的关键化学和机械调控。

The critical chemical and mechanical regulation of folic acid on neural engineering.

机构信息

Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.

Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China.

出版信息

Biomaterials. 2018 Sep;178:504-516. doi: 10.1016/j.biomaterials.2018.03.059. Epub 2018 Apr 3.

Abstract

The mandate of folic acid supplementation in grained products has reduced the occurrence of neural tube defects by one third in the U.S since its introduction by the Food and Drug Administration in 1998. However, the advantages and possible mechanisms of action of using folic acid for peripheral nerve engineering and neurological diseases still remain largely elusive. Herein, folic acid is described as an inexpensive and multifunctional niche component that modulates behaviors in different cells in the nervous system. The multiple benefits of modulation include: 1) generating chemotactic responses on glial cells, 2) inducing neurotrophin release, and 3) stimulating neuronal differentiation of a PC-12 cell system. For the first time, folic acid is also shown to enhance cellular force generation and global methylation in the PC-12 cells, thereby enabling both biomechanical and biochemical pathways to regulate neuron differentiation. These findings are evaluated in vivo for clinical translation. Our results suggest that folic acid-nerve guidance conduits may offer significant benefits as a low-cost, off-the-shelf product for reaching the functional recovery seen with autografts in large sciatic nerve defects. Consequently, folic acid holds great potential as a critical and convenient therapeutic intervention for neural engineering, regenerative medicine, medical prosthetics, and drug delivery.

摘要

自 1998 年美国食品和药物管理局(FDA)引入叶酸补充剂以来,其在谷物产品中的应用已将神经管缺陷的发生率降低了三分之一。然而,使用叶酸进行周围神经工程和神经疾病的优势和可能的作用机制在很大程度上仍然难以捉摸。本文将叶酸描述为一种廉价且多功能的生态位成分,可调节神经系统中不同细胞的行为。调节的多重益处包括:1)在神经胶质细胞上产生趋化反应,2)诱导神经营养因子释放,以及 3)刺激 PC-12 细胞系统的神经元分化。叶酸首次被证明还可以增强 PC-12 细胞中的细胞力产生和全局甲基化,从而使生物力学和生化途径都能够调节神经元分化。这些发现将在体内进行临床转化评估。我们的结果表明,叶酸神经引导管作为一种低成本、现成的产品,在治疗大型坐骨神经缺损时,可能具有与自体移植物相似的功能恢复效果,具有巨大的应用潜力。因此,叶酸作为神经工程、再生医学、医疗假肢和药物输送的关键和便捷的治疗干预措施具有巨大的潜力。

相似文献

1
The critical chemical and mechanical regulation of folic acid on neural engineering.
Biomaterials. 2018 Sep;178:504-516. doi: 10.1016/j.biomaterials.2018.03.059. Epub 2018 Apr 3.
3
Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering.
Tissue Eng Part A. 2010 May;16(5):1703-16. doi: 10.1089/ten.tea.2009.0381.
4
The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation.
Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:715-726. doi: 10.1016/j.msec.2018.06.025. Epub 2018 Jun 12.
5
Chitosan, gelatin and poly(L-lysine) polyelectrolyte-based scaffolds and films for neural tissue engineering.
J Biomater Sci Polym Ed. 2012;23(1-4):207-32. doi: 10.1163/092050610X546426. Epub 2010 Dec 30.
6
Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(d,l-lactide--caprolactone) Conduits Promote Peripheral Nerve Regeneration.
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):7915-7930. doi: 10.1021/acsami.9b20321. Epub 2020 Jan 27.
7
Electrospinning of matrigel to deposit a basal lamina-like nanofiber surface.
J Biomater Sci Polym Ed. 2010;21(8-9):1081-101. doi: 10.1163/092050609X12457428936116.
9
Tissue engineered hydrogels supporting 3D neural networks.
Acta Biomater. 2019 Sep 1;95:269-284. doi: 10.1016/j.actbio.2018.11.044. Epub 2018 Nov 27.

引用本文的文献

1
Metabotissugenic citrate biomaterials orchestrate bone regeneration via citrate-mediated signaling pathways.
Sci Adv. 2025 Jul 25;11(30):eady2862. doi: 10.1126/sciadv.ady2862. Epub 2025 Jul 23.
2
The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration.
Biomater Transl. 2024 Sep 28;5(3):236-256. doi: 10.12336/biomatertransl.2024.03.003. eCollection 2024.
3
The epigenetic modification of DNA methylation in neurological diseases.
Front Immunol. 2024 Sep 23;15:1401962. doi: 10.3389/fimmu.2024.1401962. eCollection 2024.
4
[Research progress of silk-based biomaterials for peripheral nerve regeneration].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Sep 15;38(9):1149-1156. doi: 10.7507/1002-1892.202402071.
5
Scaffold design considerations for peripheral nerve regeneration.
J Neural Eng. 2024 Jul 23;21(4). doi: 10.1088/1741-2552/ad628d.
6
Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations.
Adv Mater. 2024 Aug;36(32):e2402871. doi: 10.1002/adma.202402871. Epub 2024 Jun 11.
7
Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics.
Molecules. 2023 Dec 9;28(24):8025. doi: 10.3390/molecules28248025.
10
E, K, B5, B6, and B9 vitamins and their specific immunological effects evaluated by flow cytometry.
Front Med (Lausanne). 2023 Jan 5;9:1089476. doi: 10.3389/fmed.2022.1089476. eCollection 2022.

本文引用的文献

1
The Role of Astrocytes in Multiple Sclerosis Progression.
Front Neurol. 2015 Aug 18;6:180. doi: 10.3389/fneur.2015.00180. eCollection 2015.
2
Shootin1-cortactin interaction mediates signal-force transduction for axon outgrowth.
J Cell Biol. 2015 Aug 17;210(4):663-76. doi: 10.1083/jcb.201505011. Epub 2015 Aug 10.
5
Role of endogenous Schwann cells in tissue repair after spinal cord injury.
Neural Regen Res. 2013 Jan 15;8(2):177-85. doi: 10.3969/j.issn.1673-5374.2013.02.011.
7
Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides.
J Biomed Mater Res A. 2014 Aug;102(8):2793-804. doi: 10.1002/jbm.a.34952. Epub 2013 Sep 30.
8
The effect of oxidative stress upon the intestinal uptake of folic acid: in vitro studies with Caco-2 cells.
Cell Biol Toxicol. 2012 Dec;28(6):369-81. doi: 10.1007/s10565-012-9228-8. Epub 2012 Sep 6.
9
Development and long-term in vivo evaluation of a biodegradable urethane-doped polyester elastomer.
Macromol Mater Eng. 2011 Dec 12;296(12):1149-1157. doi: 10.1002/mame.201100074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验