Suppr超能文献

使用机器学习复制人类在检测患者-呼吸机循环不同步方面对机械通气波形分析的专业知识。

Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning.

机构信息

Autonomous Healthcare, Inc., Hoboken, NJ, USA.

Autonomous Healthcare, Inc., Hoboken, NJ, USA.

出版信息

Comput Biol Med. 2018 Jun 1;97:137-144. doi: 10.1016/j.compbiomed.2018.04.016. Epub 2018 Apr 23.

Abstract

BACKGROUND

  • Acute respiratory failure is one of the most common problems encountered in intensive care units (ICU) and mechanical ventilation is the mainstay of supportive therapy for such patients. A mismatch between ventilator delivery and patient demand is referred to as patient-ventilator asynchrony (PVA). An important hurdle in addressing PVA is the lack of a reliable framework for continuously and automatically monitoring the patient and detecting various types of PVA.

METHODS

  • The problem of replicating human expertise of waveform analysis for detecting cycling asynchrony (i.e., delayed termination, premature termination, or none) was investigated in a pilot study involving 11 patients in the ICU under invasive mechanical ventilation. A machine learning framework is used to detect cycling asynchrony based on waveform analysis.

RESULTS

  • A panel of five experts with experience in PVA evaluated a total of 1377 breath cycles from 11 mechanically ventilated critical care patients. The majority vote was used to label each breath cycle according to cycling asynchrony type. The proposed framework accurately detected the presence or absence of cycling asynchrony with sensitivity (specificity) of 89% (99%), 94% (98%), and 97% (93%) for delayed termination, premature termination, and no cycling asynchrony, respectively. The system showed strong agreement with human experts as reflected by the kappa coefficients of 0.90, 0.91, and 0.90 for delayed termination, premature termination, and no cycling asynchrony, respectively.

CONCLUSIONS

  • The pilot study establishes the feasibility of using a machine learning framework to provide waveform analysis equivalent to an expert human.
摘要

背景

-急性呼吸衰竭是重症监护病房(ICU)最常见的问题之一,机械通气是此类患者支持治疗的主要手段。呼吸机输送与患者需求不匹配称为患者-呼吸机不同步(PVA)。解决 PVA 的一个重要障碍是缺乏可靠的框架来连续自动监测患者并检测各种类型的 PVA。

方法

-在一项涉及 11 名 ICU 接受有创机械通气的患者的初步研究中,研究了复制人类专家进行波形分析以检测循环不同步(即延迟终止、过早终止或无)的能力。使用机器学习框架基于波形分析来检测循环不同步。

结果

-一组具有 PVA 经验的五位专家总共评估了 11 名机械通气重症监护患者的 1377 个呼吸周期。多数投票用于根据循环不同步类型对每个呼吸周期进行标记。所提出的框架能够准确检测循环不同步的存在与否,延迟终止、过早终止和无循环不同步的灵敏度(特异性)分别为 89%(99%)、94%(98%)和 97%(93%)。该系统与人类专家具有很强的一致性,延迟终止、过早终止和无循环不同步的kappa 系数分别为 0.90、0.91 和 0.90。

结论

-初步研究确立了使用机器学习框架提供相当于专家级人类的波形分析的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验