Xu Yue, Xue Jingjing, Deng Yunfeng, Tu Lili, Ding Yu, Zhang Yibing, Yuan Xinrui, Xu Kexin, Guo Liangmei, Gao Na
Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, People's Republic of China.
Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, People's Republic of China.
Int J Gen Med. 2025 Jun 21;18:3301-3311. doi: 10.2147/IJGM.S515170. eCollection 2025.
Mechanical ventilation, a key ICU life-support tech, carries risks. ML can optimize patient management, improving clinical decisions, patient outcomes, and resource use.
This review aims to summarize the current applications, challenges, and future directions of machine learning in managing mechanically ventilated patients, focusing on prediction models for extubation readiness, oxygenation management, ventilator parameter optimization, clinical prognosis, and pulmonary function assessment.
Multiple databases, including PubMed, Web of Science, CNKI and Wanfang Data were systematically searched for studies on machine learning in mechanical ventilation management. Keywords included mechanical ventilation, machine learning, weaning, etc. We reviewed recent studies on using machine learning to predict successful extubation, optimize oxygenation targets, personalize ventilator settings, forecast mechanical ventilation duration and clinical outcomes. The review also examined challenges of integrating machine learning into clinical practice, such as data integration, model interpretability, and real - time performance requirements.
Machine learning models have demonstrated significant potential in predicting successful extubation, optimizing oxygenation strategies through non-invasive blood gas prediction, and dynamically adjusting ventilator parameters using reinforcement learning. These models have also shown promise in predicting mechanical ventilation duration, clinical prognosis and pulmonary function parameters. However, challenges remain, including data heterogeneity, model generalizability, workflow integration, and the need for multicenter validation.
Machine learning shows great potential for improving intensive care quality and efficiency in mechanically ventilated patients. However, challenges like model interpretability, real-time performance, clinical and validation remain. Future research needs to focus on these limitations via large-scale, multicenter trials, better data standardization, and improved physician training to safely and effectively integrate ML into clinical practice. Collaboration among medical, engineering, and ethical experts is also essential for advancing this promising field.
机械通气作为重症监护病房(ICU)关键的生命支持技术,存在一定风险。机器学习(ML)可优化患者管理,改善临床决策、患者预后及资源利用。
本综述旨在总结机器学习在机械通气患者管理中的当前应用、挑战及未来方向,重点关注拔管准备、氧合管理、呼吸机参数优化、临床预后及肺功能评估的预测模型。
系统检索多个数据库,包括PubMed、Web of Science、中国知网(CNKI)和万方数据,以查找关于机器学习在机械通气管理方面的研究。关键词包括机械通气、机器学习、撤机等。我们回顾了近期关于使用机器学习预测成功拔管、优化氧合目标、个性化呼吸机设置、预测机械通气持续时间和临床结局的研究。该综述还探讨了将机器学习整合到临床实践中的挑战,如数据整合、模型可解释性及实时性能要求。
机器学习模型在预测成功拔管、通过无创血气预测优化氧合策略以及使用强化学习动态调整呼吸机参数方面已显示出巨大潜力。这些模型在预测机械通气持续时间、临床预后和肺功能参数方面也展现出前景。然而,挑战依然存在,包括数据异质性、模型通用性、工作流程整合以及多中心验证的需求。
机器学习在提高机械通气患者的重症监护质量和效率方面显示出巨大潜力。然而,模型可解释性、实时性能、临床应用及验证等挑战仍然存在。未来研究需要通过大规模、多中心试验、更好的数据标准化以及改进医生培训来关注这些局限性,以便安全有效地将机器学习整合到临床实践中。医学、工程和伦理专家之间的合作对于推动这一有前景的领域也至关重要。