Suppr超能文献

我们能否预测呼吸衰竭预测的未来?

Can we predict the future of respiratory failure prediction?

作者信息

Pearce Alex K, Nemati Shamim, Goligher Ewan C, Hough Catherine L, Holder Andre L, Wardi Gabriel, Yang Philip, Boussina Aaron, Lyons Patrick G, Sahetya Sarina, Malhotra Atul, Rogers Angela

机构信息

Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of California San Diego, La Jolla, CA, USA.

, 9500 Gilman Drive, 92093, La Jolla, CA, USA.

出版信息

Crit Care. 2025 Jun 19;29(1):253. doi: 10.1186/s13054-025-05484-7.

Abstract

BACKGROUND

Mortality in patients with acute respiratory failure remains high. Predicting progression of acute respiratory failure may be critical to improving patient outcomes. Machine learning, a subset of artificial intelligence is a rapidly expanding area, which is being integrated into several areas of clinical medicine. This manuscript will address the knowledge gap in predicting the onset and progression of respiratory failure, provide a review of existing prognostic strategies, and provide a clinical perspective on the implementation and future integration of machine learning into clinical care.

MAIN BODY

Existing strategies for predicting respiratory failure, such as prediction scores and biomarkers, offer both strengths and limitations. While these tools provide some prognostic value, machine learning presents a promising, data-driven approach to prognostication in the intensive care unit. Machine learning has already shown success in various areas of clinical medicine, although relatively few algorithms target respiratory failure prediction specifically. As machine learning grows in the context of respiratory failure, outcomes such as the need for invasive mechanical ventilation and escalation of respiratory support (e.g. non-invasive ventilation) have been identified as key targets. However, the development and implementation of machine learning models in clinical care involves complex challenges. Future success will depend on rigorous model validation, clinician collaboration, thoughtful trial design, and the application of implementation science to ensure integration into clinical care.

CONCLUSION

Machine learning holds promise for optimizing treatment strategies and potentially improving outcomes in respiratory failure. However, further research and development are necessary to fully realize its potential in clinical practice.

摘要

背景

急性呼吸衰竭患者的死亡率仍然很高。预测急性呼吸衰竭的进展对于改善患者预后可能至关重要。机器学习作为人工智能的一个子集,是一个迅速发展的领域,正在被整合到临床医学的多个领域。本文将填补预测呼吸衰竭发作和进展方面的知识空白,综述现有的预后策略,并从临床角度探讨机器学习在临床护理中的实施和未来整合。

正文

现有的预测呼吸衰竭的策略,如预测评分和生物标志物,都有其优点和局限性。虽然这些工具提供了一些预后价值,但机器学习为重症监护病房的预后提供了一种有前景的数据驱动方法。机器学习已经在临床医学的各个领域取得了成功,尽管专门针对呼吸衰竭预测的算法相对较少。随着机器学习在呼吸衰竭领域的发展,诸如有创机械通气需求和呼吸支持升级(如无创通气)等结果已被确定为关键目标。然而,机器学习模型在临床护理中的开发和实施涉及复杂的挑战。未来的成功将取决于严格的模型验证、临床医生的合作、精心的试验设计以及实施科学的应用,以确保其融入临床护理。

结论

机器学习有望优化治疗策略并潜在改善呼吸衰竭的预后。然而,需要进一步的研究和开发,以充分实现其在临床实践中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd10/12180172/1652d71347b5/13054_2025_5484_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验