Suppr超能文献

基于基因调控网络基 attractor 景观的细胞衰老动力学分析。

Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.

机构信息

Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.

Complexity Institute, Nanyang Technological University, 637723, Singapore, Singapore.

出版信息

PLoS One. 2018 Jun 1;13(6):e0197838. doi: 10.1371/journal.pone.0197838. eCollection 2018.

Abstract

Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.

摘要

衰老既是一种自然现象,又极其复杂,至今仍是一个谜。为了对衰老进行计算研究,提出了细胞衰老景观的概念模型。然而,目前缺乏细胞衰老景观的定量模型。本研究旨在使用 Waddington 的表观遗传景观框架,在理论模型中研究细胞衰老的机制。我们构建了一个由核心细胞周期调控基因(包括 p53)组成的衰老基因调控网络(GRN)。使用模型参数(激活率)作为衡量 DNA 损伤积累的指标。通过分叉图来估计导致多稳定性的参数值,我们获得了一个捕获三个不同稳定稳态(或吸引子)的概念模型,分别对应于体内平衡、细胞周期停滞和衰老或凋亡。此外,我们应用蒙特卡罗计算方法来量化潜在景观,该景观显示:I)低 DNA 损伤积累时存在一个体内平衡吸引子;II)高 DNA 损伤积累时存在两个细胞周期停滞和衰老(或凋亡)的吸引子。使用 Waddington 的表观遗传景观框架,可以将衰老过程的特征描述为从景观 I 到 II 的状态转变。通过计算机模拟扰动,我们确定了扰动网络的潜在景观(p53 失活),从而证明了癌症吸引子的出现。扰动网络的模拟动力学显示出具有四个吸引盆地的景观:体内平衡、细胞周期停滞、衰老(或凋亡)和癌症。我们的分析还表明,对于具有低 DNA 损伤的相同扰动网络,景观仅显示体内平衡吸引子。该机制模型提供了理论见解,可以为衰老相关疾病(如癌症)的网络医学的潜在策略的发现提供便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/094d/5983441/3b83d5099801/pone.0197838.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验