Suppr超能文献

生物膜基质生成过程中的分工。

Division of Labor during Biofilm Matrix Production.

机构信息

Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena 07743, Germany.

Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark.

出版信息

Curr Biol. 2018 Jun 18;28(12):1903-1913.e5. doi: 10.1016/j.cub.2018.04.046. Epub 2018 Jun 7.

Abstract

Organisms as simple as bacteria can engage in complex collective actions, such as group motility and fruiting body formation. Some of these actions involve a division of labor, where phenotypically specialized clonal subpopulations or genetically distinct lineages cooperate with each other by performing complementary tasks. Here, we combine experimental and computational approaches to investigate potential benefits arising from division of labor during biofilm matrix production. We show that both phenotypic and genetic strategies for a division of labor can promote collective biofilm formation in the soil bacterium Bacillus subtilis. In this species, biofilm matrix consists of two major components, exopolysaccharides (EPSs) and TasA. We observed that clonal groups of B. subtilis phenotypically segregate into three subpopulations composed of matrix non-producers, EPS producers, and generalists, which produce both EPSs and TasA. This incomplete phenotypic specialization was outperformed by a genetic division of labor, where two mutants, engineered as specialists, complemented each other by exchanging EPSs and TasA. The relative fitness of the two mutants displayed a negative frequency dependence both in vitro and on plant roots, with strain frequency reaching a stable equilibrium at 30% TasA producers, corresponding exactly to the population composition where group productivity is maximized. Using individual-based modeling, we show that asymmetries in strain ratio can arise due to differences in the relative benefits that matrix compounds generate for the collective and that genetic division of labor can be favored when it breaks metabolic constraints associated with the simultaneous production of two matrix components.

摘要

即使是像细菌这样简单的生物也能进行复杂的集体行动,例如群体运动和生殖体形成。其中一些行为涉及劳动分工,即表型特化的克隆亚群或遗传上不同的谱系通过执行互补任务相互合作。在这里,我们结合实验和计算方法来研究在生物膜基质产生过程中劳动分工带来的潜在好处。我们表明,在土壤细菌枯草芽孢杆菌中,劳动分工的表型和遗传策略都可以促进集体生物膜的形成。在该物种中,生物膜基质由两种主要成分组成,即胞外多糖(EPS)和 TasA。我们观察到,枯草芽孢杆菌的克隆群体在表型上分为由基质非生产者、EPS 生产者和多面手组成的三个亚群,后者既能产生 EPS 又能产生 TasA。这种不完全的表型特化被遗传劳动分工所超越,其中两个突变体被设计为专家,通过交换 EPS 和 TasA 来相互补充。两种突变体的相对适应性在体外和植物根系上都表现出负频率依赖性,在 TasA 生产者的频率达到 30%时,菌株频率达到稳定平衡,正好与群体生产力最大化的种群组成相对应。使用基于个体的建模,我们表明,由于基质化合物对集体产生的相对益处的差异,可以出现菌株比例的不对称性,并且当遗传劳动分工打破与同时产生两种基质成分相关的代谢限制时,可以被有利地选择。

相似文献

1
Division of Labor during Biofilm Matrix Production.
Curr Biol. 2018 Jun 18;28(12):1903-1913.e5. doi: 10.1016/j.cub.2018.04.046. Epub 2018 Jun 7.
2
Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms.
Nat Microbiol. 2018 Dec;3(12):1451-1460. doi: 10.1038/s41564-018-0263-y. Epub 2018 Oct 8.
3
Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles.
J Mol Biol. 2019 Nov 22;431(23):4749-4759. doi: 10.1016/j.jmb.2019.02.005. Epub 2019 Feb 12.
4
Division of labour during Bacillus subtilis biofilm formation.
Mol Microbiol. 2008 Jan;67(2):229-31. doi: 10.1111/j.1365-2958.2007.06053.x. Epub 2007 Dec 11.
5
A major protein component of the Bacillus subtilis biofilm matrix.
Mol Microbiol. 2006 Feb;59(4):1229-38. doi: 10.1111/j.1365-2958.2005.05020.x.
6
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Mol Microbiol. 2008 Jun;68(5):1117-27. doi: 10.1111/j.1365-2958.2008.06201.x. Epub 2008 Apr 21.
7
Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms.
PLoS Genet. 2021 Jul 19;17(7):e1009682. doi: 10.1371/journal.pgen.1009682. eCollection 2021 Jul.
10
Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.
mBio. 2012 Aug 14;3(4):e00184-12. doi: 10.1128/mBio.00184-12. Print 2012.

引用本文的文献

2
Deciphering microbial spatial organization: insights from synthetic and engineered communities.
ISME Commun. 2025 Jun 27;5(1):ycaf107. doi: 10.1093/ismeco/ycaf107. eCollection 2025 Jan.
4
Harnessing emergent properties of microbial consortia for Agriculture: Assembly of the Xilonen SynCom.
Biofilm. 2025 May 3;9:100284. doi: 10.1016/j.bioflm.2025.100284. eCollection 2025 Jun.
6
Plipastatin is a shared good by Bacillus subtilis during combating Fusarium spp.
FEMS Microbiol Ecol. 2025 Mar 18;101(4). doi: 10.1093/femsec/fiaf020.
8
Surfactin accelerates pellicle biofilm development.
Biofilm. 2024 Dec 30;9:100249. doi: 10.1016/j.bioflm.2024.100249. eCollection 2025 Jun.
9
biofilm formation diminishes bacterial proliferation in the intestine.
Biofilm. 2024 Sep 27;8:100225. doi: 10.1016/j.bioflm.2024.100225. eCollection 2024 Dec.
10
Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms.
NPJ Biofilms Microbiomes. 2024 Oct 2;10(1):98. doi: 10.1038/s41522-024-00555-z.

本文引用的文献

1
Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA.
Mol Microbiol. 2018 Dec;110(6):897-913. doi: 10.1111/mmi.13985. Epub 2018 Nov 16.
2
Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms.
FEMS Microbiol Ecol. 2017 Dec 1;93(12). doi: 10.1093/femsec/fix155.
3
The physical boundaries of public goods cooperation between surface-attached bacterial cells.
Proc Biol Sci. 2017 Jul 12;284(1858). doi: 10.1098/rspb.2017.0631.
4
De novo evolved interference competition promotes the spread of biofilm defectors.
Nat Commun. 2017 May 2;8:15127. doi: 10.1038/ncomms15127.
5
Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms.
Microorganisms. 2017 Feb 16;5(1):7. doi: 10.3390/microorganisms5010007.
6
Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.
PLoS One. 2017 Jan 25;12(1):e0169521. doi: 10.1371/journal.pone.0169521. eCollection 2017.
7
The Peculiar Functions of the Bacterial Extracellular Matrix.
Trends Microbiol. 2017 Apr;25(4):257-266. doi: 10.1016/j.tim.2016.12.010. Epub 2017 Jan 11.
8
Monitoring Spatial Segregation in Surface Colonizing Microbial Populations.
J Vis Exp. 2016 Oct 29(116):54752. doi: 10.3791/54752.
9
Experimental Evolution of Metabolic Dependency in Bacteria.
PLoS Genet. 2016 Nov 4;12(11):e1006364. doi: 10.1371/journal.pgen.1006364. eCollection 2016 Nov.
10
Division of labour in microorganisms: an evolutionary perspective.
Nat Rev Microbiol. 2016 Nov;14(11):716-723. doi: 10.1038/nrmicro.2016.111. Epub 2016 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验