Suppr超能文献

预测遗传毒性和致癌性的(定量)构效关系方法:科学原理与监管框架

(Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks.

作者信息

Bossa Cecilia, Benigni Romualdo, Tcheremenskaia Olga, Battistelli Chiara Laura

机构信息

Environment and Health Department, Istituto Superiore di Sanità, Roma, Italy.

Alpha-Pretox, Roma, Italy.

出版信息

Methods Mol Biol. 2018;1800:447-473. doi: 10.1007/978-1-4939-7899-1_20.

Abstract

Knowledge of the genotoxicity and carcinogenicity potential of chemical substances is one of the key scientific elements able to better protect human health. Genotoxicity assessment is also considered as prescreening of carcinogenicity. The assessment of both endpoints is a fundamental component of national and international legislations, for all types of substances, and has stimulated the development of alternative, nontesting methods. Over the recent decades, much attention has been given to the use and further development of structure-activity relationships-based approaches, to be used in isolation or in combination with in vitro assays for predictive purposes. In this chapter, we briefly introduce the rationale for the main (Q)SAR approaches, and detail the most important regulatory initiatives and frameworks. It appears that the existence and needs of regulatory frameworks stimulate the development of better predictive tools; in turn, this allows the regulators to fine-tune their requirements for an improved defense of human health.

摘要

了解化学物质的遗传毒性和致癌潜力是能够更好地保护人类健康的关键科学要素之一。遗传毒性评估也被视为致癌性的预筛选。对这两个终点的评估是国家和国际法规针对所有类型物质的基本组成部分,并推动了替代性非测试方法的发展。在最近几十年中,基于构效关系的方法的使用和进一步发展受到了广泛关注,这些方法可单独使用或与体外试验结合用于预测目的。在本章中,我们简要介绍主要(定量)构效关系方法的基本原理,并详细阐述最重要的监管举措和框架。似乎监管框架的存在和需求推动了更好的预测工具的发展;反过来,这又使监管机构能够微调其要求,以更好地保护人类健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验