Suppr超能文献

哺乳动物中的抗病毒 RNA 干扰。

Antiviral RNA interference in mammals.

机构信息

Department of Microbiology and Plant Pathology, University of California, Riverside, USA.

Department of Microbiology and Plant Pathology, University of California, Riverside, USA.

出版信息

Curr Opin Immunol. 2018 Oct;54:109-114. doi: 10.1016/j.coi.2018.06.010. Epub 2018 Jul 17.

Abstract

Infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi). Consistent with a major antiviral function of RNAi, productive virus infection in these eukaryotic hosts depends on the expression of virus-encoded suppressors of RNAi (VSRs). The eukaryotic RNAi pathway is highly conserved, particularly between insects and mammals. This review will discuss key recent findings that indicate a natural antiviral function of the RNAi pathway in mammalian cells. We will summarize the properties of the characterized mammalian vsiRNAs and VSRs and highlight important questions remaining to be addressed on the function and mechanism of mammalian antiviral RNAi.

摘要

植物和昆虫感染 RNA 和 DNA 病毒会触发 Dicer 依赖性产生病毒衍生的小干扰 RNA (vsiRNA),随后通过 RNA 干扰 (RNAi) 指导特定的病毒清除。与 RNAi 的主要抗病毒功能一致,这些真核宿主中的有效病毒感染依赖于病毒编码的 RNAi 抑制剂 (VSR) 的表达。真核 RNAi 途径高度保守,特别是在昆虫和哺乳动物之间。这篇综述将讨论最近的重要发现,这些发现表明 RNAi 途径在哺乳动物细胞中具有天然的抗病毒功能。我们将总结已鉴定的哺乳动物 vsiRNA 和 VSR 的特性,并强调在哺乳动物抗病毒 RNAi 的功能和机制方面仍需解决的重要问题。

相似文献

1
Antiviral RNA interference in mammals.
Curr Opin Immunol. 2018 Oct;54:109-114. doi: 10.1016/j.coi.2018.06.010. Epub 2018 Jul 17.
2
Slicing and dicing viruses: antiviral RNA interference in mammals.
EMBO J. 2019 Apr 15;38(8). doi: 10.15252/embj.2018100941. Epub 2019 Mar 14.
3
RNA interference, an emerging component of antiviral immunity in mammals.
Biochem Soc Trans. 2023 Feb 27;51(1):137-146. doi: 10.1042/BST20220385.
5
Interaction of viruses with the mammalian RNA interference pathway.
Virology. 2006 Jan 5;344(1):151-7. doi: 10.1016/j.virol.2005.09.034.
7
Mammalian viral suppressors of RNA interference.
Trends Biochem Sci. 2022 Nov;47(11):978-988. doi: 10.1016/j.tibs.2022.05.001. Epub 2022 May 23.
8
The silent treatment: RNAi as a defense against virus infection in mammals.
Trends Biotechnol. 2006 Apr;24(4):186-93. doi: 10.1016/j.tibtech.2006.02.006. Epub 2006 Feb 28.
9
Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference.
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0003522. doi: 10.1128/mmbr.00035-22. Epub 2023 Apr 13.
10
Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2.
PLoS Pathog. 2021 Aug 3;17(8):e1009790. doi: 10.1371/journal.ppat.1009790. eCollection 2021 Aug.

引用本文的文献

2
Importance of an N-terminal structural switch in the distinction between small RNA-bound and free ARGONAUTE.
Nat Struct Mol Biol. 2025 Apr;32(4):625-638. doi: 10.1038/s41594-024-01446-9. Epub 2025 Jan 7.
4
Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2321170121. doi: 10.1073/pnas.2321170121. Epub 2024 Apr 17.
5
Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs.
J Proteome Res. 2024 Jan 5;23(1):149-160. doi: 10.1021/acs.jproteome.3c00506. Epub 2023 Dec 3.
6
Role of SARS‑CoV‑2 nucleocapsid protein in affecting immune cells and insights on its molecular mechanisms.
Exp Ther Med. 2023 Sep 12;26(5):504. doi: 10.3892/etm.2023.12203. eCollection 2023 Nov.
7
The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know.
Curr Res Microb Sci. 2023 Sep 7;5:100202. doi: 10.1016/j.crmicr.2023.100202. eCollection 2023.
8
Aptamer-Based Strategies to Address Challenges in COVID-19 Diagnosis and Treatments.
Interdiscip Perspect Infect Dis. 2023 Jul 31;2023:9224815. doi: 10.1155/2023/9224815. eCollection 2023.
9
Interplay between RNA interference and transposable elements in mammals.
Front Immunol. 2023 Jul 5;14:1212086. doi: 10.3389/fimmu.2023.1212086. eCollection 2023.
10
Virus interference in CoViD-19.
Bioinformation. 2022 Sep 30;18(9):768-773. doi: 10.6026/97320630018768. eCollection 2022.

本文引用的文献

2
Influenza A virus-derived siRNAs increase in the absence of NS1 yet fail to inhibit virus replication.
RNA. 2018 Sep;24(9):1172-1182. doi: 10.1261/rna.066332.118. Epub 2018 Jun 14.
3
Metazoan MicroRNAs.
Cell. 2018 Mar 22;173(1):20-51. doi: 10.1016/j.cell.2018.03.006.
4
Antiviral Immunity and Virus-Mediated Antagonism in Disease Vector Mosquitoes.
Trends Microbiol. 2018 May;26(5):447-461. doi: 10.1016/j.tim.2017.12.005. Epub 2018 Jan 31.
7
Caenorhabditis elegans as an Emerging Model for Virus-Host Interactions.
J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.00509-17. Print 2017 Dec 1.
8
Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells.
mSphere. 2017 Aug 16;2(4). doi: 10.1128/mSphere.00333-17. eCollection 2017 Jul-Aug.
9
Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals.
Immunity. 2017 Jun 20;46(6):992-1004.e5. doi: 10.1016/j.immuni.2017.05.006.
10
Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells.
Nat Microbiol. 2016 Dec 5;2:16250. doi: 10.1038/nmicrobiol.2016.250.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验