Suppr超能文献

茄子 AG91-25 识别 III 型分泌效应物 RipAX2 以触发对青枯病(茄科劳尔氏菌复合种)的抗性。

The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex).

机构信息

LIPM, Université de Toulouse, INRA, CNRS,, F-31326, Castanet-Tolosan, France.

Université de La Réunion, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France.

出版信息

Mol Plant Pathol. 2018 Nov;19(11):2459-2472. doi: 10.1111/mpp.12724. Epub 2018 Oct 16.

Abstract

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.

摘要

为了实现持久的植物抗性,我们必须深入了解其潜在的分子机制。III 型效应子(T3E)及其识别在细菌病原体与作物的互作中起着核心作用。我们证明,罗尔斯顿氏菌复合种(RSSC)T3E ripAX2 在茄子 AG91-25 中触发了特定的抗性,AG91-25 携带主要抗性基因 EBWR9。茄子品种 AG91-25 对野生型 R. pseudosolanacearum 菌株 GMI1000 具有抗性,而该菌株的 ripAX2 缺陷突变体能引起萎蔫。值得注意的是,从 GMI1000 菌株添加 ripAX2 到 PSS4 可以抑制萎蔫的发展,这表明 RipAX2 是 AG91-25 抗性的激发子。以前已经证明,RipAX2 在前体茄子 Solanum torvum 中诱导效应子触发的免疫(ETI),其假定的锌(Zn)结合基序(HELIH)对 ETI 至关重要。我们表明,在我们的模型中,HELIH 基序对于 AG91-25 茄子的 ETI 不是必需的。在筛选的 91 株 RSSC 菌株中,ripAX2 基因存在于 68.1%的菌株中,但在包括 R. solanacearum 和 R. syzygii 菌株的 74 个基因组集合中仅存在于 31.1%的菌株中。总体而言,它优先与 R. pseudosolanacearum 生物型 I 相关。RipAX2 似乎是优势等位基因,在 R. pseudosolanacearum 和 R. solanacearum 中都很普遍,这表明部署 AG91-25 抗性可以有效地控制亚洲、非洲和美洲热带地区的细菌性萎蔫病。这项研究加深了对 RipAX2 与 EBWR9 基因座抗性基因之间相互作用的理解,并为功能遗传学和进化分析铺平了道路。

相似文献

2
Identification of RipAZ1 as an avirulence determinant of Ralstonia solanacearum in Solanum americanum.
Mol Plant Pathol. 2021 Mar;22(3):317-333. doi: 10.1111/mpp.13030. Epub 2021 Jan 3.
3
Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.
Mol Plant Pathol. 2016 May;17(4):553-64. doi: 10.1111/mpp.12302. Epub 2015 Dec 2.
4
Comparison between Solanum torvum Sw. and S. melongena L. after Ralstonia solanacearum inoculation.
Plant Biol (Stuttg). 2014 Sep;16(5):1025-8. doi: 10.1111/plb.12185. Epub 2014 May 22.
6
Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant.
Phytopathology. 2015 Dec;105(12):1529-44. doi: 10.1094/PHYTO-06-15-0140-R. Epub 2015 Dec 17.
7
Calcium modulation of bacterial wilt disease on potato.
Appl Environ Microbiol. 2024 May 21;90(5):e0024224. doi: 10.1128/aem.00242-24. Epub 2024 May 1.
9
Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant.
Theor Appl Genet. 2013 Jan;126(1):143-58. doi: 10.1007/s00122-012-1969-5. Epub 2012 Aug 29.

引用本文的文献

1
Molecular Dialog of and Plant Hosts with Highlights on Type III Effectors.
Int J Mol Sci. 2025 Apr 13;26(8):3686. doi: 10.3390/ijms26083686.
2
type III effector RipAF1 mediates plant resistance signaling by ADP-ribosylation of host FBN1.
Hortic Res. 2024 Jun 12;11(8):uhae162. doi: 10.1093/hr/uhae162. eCollection 2024 Aug.
3
Trojan Horse virus delivering CRISPR-AsCas12f1 controls plant bacterial wilt caused by .
mBio. 2024 Aug 14;15(8):e0061924. doi: 10.1128/mbio.00619-24. Epub 2024 Jul 16.
5
Comparative genomic analysis of reveals candidate avirulence effectors in HA4-1 triggering wild potato immunity.
Front Plant Sci. 2023 Feb 23;14:1075042. doi: 10.3389/fpls.2023.1075042. eCollection 2023.
6
Three amino acid residues are required for the recognition of RipTPS in .
Front Plant Sci. 2022 Oct 13;13:1040826. doi: 10.3389/fpls.2022.1040826. eCollection 2022.
8
Complete Genome Sequence Analysis of Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants.
Front Microbiol. 2022 Feb 23;13:830900. doi: 10.3389/fmicb.2022.830900. eCollection 2022.
10
Identification of RipAZ1 as an avirulence determinant of Ralstonia solanacearum in Solanum americanum.
Mol Plant Pathol. 2021 Mar;22(3):317-333. doi: 10.1111/mpp.13030. Epub 2021 Jan 3.

本文引用的文献

1
Eggplant Resistance to the Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci.
Front Plant Sci. 2017 May 19;8:828. doi: 10.3389/fpls.2017.00828. eCollection 2017.
2
3
Behind the lines-actions of bacterial type III effector proteins in plant cells.
FEMS Microbiol Rev. 2016 Nov 1;40(6):894-937. doi: 10.1093/femsre/fuw026.
5
Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant.
Phytopathology. 2015 Dec;105(12):1529-44. doi: 10.1094/PHYTO-06-15-0140-R. Epub 2015 Dec 17.
6
Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.
Mol Plant Pathol. 2016 May;17(4):553-64. doi: 10.1111/mpp.12302. Epub 2015 Dec 2.
8
Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity.
BMC Genomics. 2015 Apr 8;16(1):270. doi: 10.1186/s12864-015-1474-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验