LIPM, Université de Toulouse, INRA, CNRS,, F-31326, Castanet-Tolosan, France.
Université de La Réunion, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France.
Mol Plant Pathol. 2018 Nov;19(11):2459-2472. doi: 10.1111/mpp.12724. Epub 2018 Oct 16.
To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.
为了实现持久的植物抗性,我们必须深入了解其潜在的分子机制。III 型效应子(T3E)及其识别在细菌病原体与作物的互作中起着核心作用。我们证明,罗尔斯顿氏菌复合种(RSSC)T3E ripAX2 在茄子 AG91-25 中触发了特定的抗性,AG91-25 携带主要抗性基因 EBWR9。茄子品种 AG91-25 对野生型 R. pseudosolanacearum 菌株 GMI1000 具有抗性,而该菌株的 ripAX2 缺陷突变体能引起萎蔫。值得注意的是,从 GMI1000 菌株添加 ripAX2 到 PSS4 可以抑制萎蔫的发展,这表明 RipAX2 是 AG91-25 抗性的激发子。以前已经证明,RipAX2 在前体茄子 Solanum torvum 中诱导效应子触发的免疫(ETI),其假定的锌(Zn)结合基序(HELIH)对 ETI 至关重要。我们表明,在我们的模型中,HELIH 基序对于 AG91-25 茄子的 ETI 不是必需的。在筛选的 91 株 RSSC 菌株中,ripAX2 基因存在于 68.1%的菌株中,但在包括 R. solanacearum 和 R. syzygii 菌株的 74 个基因组集合中仅存在于 31.1%的菌株中。总体而言,它优先与 R. pseudosolanacearum 生物型 I 相关。RipAX2 似乎是优势等位基因,在 R. pseudosolanacearum 和 R. solanacearum 中都很普遍,这表明部署 AG91-25 抗性可以有效地控制亚洲、非洲和美洲热带地区的细菌性萎蔫病。这项研究加深了对 RipAX2 与 EBWR9 基因座抗性基因之间相互作用的理解,并为功能遗传学和进化分析铺平了道路。