Suppr超能文献

线粒体靶向药物可刺激自噬并阻断结肠癌细胞增殖。

Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation.

机构信息

From the Department of Microbiology & Immunology.

MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.

出版信息

J Biol Chem. 2018 Sep 21;293(38):14891-14904. doi: 10.1074/jbc.RA117.001469. Epub 2018 Aug 7.

Abstract

Mutations in the KRAS proto-oncogene are present in 50% of all colorectal cancers and are increasingly associated with chemotherapeutic resistance to frontline biologic drugs. Accumulating evidence indicates key roles for overactive KRAS mutations in the metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis in cancer cells. Here, we sought to exploit the more negative membrane potential of cancer cell mitochondria as an untapped avenue for interfering with energy metabolism in KRAS variant-containing and KRAS WT colorectal cancer cells. Mitochondrial function, intracellular ATP levels, cellular uptake, energy sensor signaling, and functional effects on cancer cell proliferation were assayed. 3-Carboxyl proxyl nitroxide (Mito-CP) and Mito-Metformin, two mitochondria-targeted compounds, depleted intracellular ATP levels and persistently inhibited ATP-linked oxygen consumption in both KRAS WT and KRAS variant-containing colon cancer cells and had only limited effects on nontransformed intestinal epithelial cells. These anti-proliferative effects reflected the activation of AMP-activated protein kinase (AMPK) and the phosphorylation-mediated suppression of the mTOR target ribosomal protein S6 kinase B1 (RPS6KB1 or p70S6K). Moreover, Mito-CP and Mito-Metformin released Unc-51-like autophagy-activating kinase 1 (ULK1) from mTOR-mediated inhibition, affected mitochondrial morphology, and decreased mitochondrial membrane potential, all indicators of mitophagy. Pharmacological inhibition of the AMPK signaling cascade mitigated the anti-proliferative effects of Mito-CP and Mito-Metformin. This is the first demonstration that drugs selectively targeting mitochondria induce mitophagy in cancer cells. Targeting bioenergetic metabolism with mitochondria-targeted drugs to stimulate mitophagy provides an attractive approach for therapeutic intervention in KRAS WT and overactive mutant-expressing colon cancer.

摘要

KRAS 原癌基因突变存在于所有结直肠癌的 50%中,并且与一线生物药物的化疗耐药性越来越相关。越来越多的证据表明,在癌细胞的代谢重编程中,过度活跃的 KRAS 突变起着关键作用,从氧化磷酸化到有氧糖酵解。在这里,我们试图利用癌细胞线粒体的更负膜电位作为一种未开发的途径,来干扰含有 KRAS 变体和 KRAS WT 的结直肠癌细胞的能量代谢。测定了线粒体功能、细胞内 ATP 水平、细胞摄取、能量传感器信号和对癌细胞增殖的功能影响。两种线粒体靶向化合物 3-羧基探针基氮氧化物(Mito-CP)和 Mito-Metformin,降低了细胞内 ATP 水平,并持续抑制 KRAS WT 和含有 KRAS 变体的结肠癌细胞中与 ATP 相关的耗氧量,对非转化的肠上皮细胞仅有有限的影响。这些抗增殖作用反映了 AMP 激活蛋白激酶 (AMPK) 的激活以及 mTOR 靶核糖体蛋白 S6 激酶 B1 (RPS6KB1 或 p70S6K) 的磷酸化介导抑制。此外,Mito-CP 和 Mito-Metformin 将 UNC-51 样自噬激活激酶 1 (ULK1) 从 mTOR 介导的抑制中释放出来,影响线粒体形态,并降低线粒体膜电位,这些都是自噬的指标。AMPK 信号级联的药理学抑制减轻了 Mito-CP 和 Mito-Metformin 的抗增殖作用。这是第一个证明选择性靶向线粒体的药物在癌细胞中诱导自噬的证明。用靶向线粒体的药物靶向生物能量代谢以刺激自噬,为 KRAS WT 和过度活跃的突变表达的结肠癌的治疗干预提供了一种有吸引力的方法。

相似文献

1
Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation.
J Biol Chem. 2018 Sep 21;293(38):14891-14904. doi: 10.1074/jbc.RA117.001469. Epub 2018 Aug 7.
3
Thyroid hormone (T) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy.
Autophagy. 2019 Jan;15(1):131-150. doi: 10.1080/15548627.2018.1511263. Epub 2018 Sep 13.
4
Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy.
FEBS Lett. 2015 Jul 8;589(15):1847-54. doi: 10.1016/j.febslet.2015.05.020. Epub 2015 May 14.
6
The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II.
Autophagy. 2018;14(12):2117-2138. doi: 10.1080/15548627.2018.1505153. Epub 2018 Sep 6.
10
Dendrobium officinale polysaccharide triggers mitochondrial disorder to induce colon cancer cell death via ROS-AMPK-autophagy pathway.
Carbohydr Polym. 2021 Jul 15;264:118018. doi: 10.1016/j.carbpol.2021.118018. Epub 2021 Apr 2.

引用本文的文献

1
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.
J Hematol Oncol. 2025 Aug 1;18(1):78. doi: 10.1186/s13045-025-01727-w.
3
The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors.
Cancer Cell Int. 2025 Feb 15;25(1):46. doi: 10.1186/s12935-025-03685-2.
4
A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer.
Int J Mol Sci. 2025 Jan 7;26(2):448. doi: 10.3390/ijms26020448.
5
Non-pathogenic Trojan horse triggers mitophagy through PINK1/Parkin pathway to discourage colon cancer.
Mater Today Bio. 2024 Sep 27;29:101273. doi: 10.1016/j.mtbio.2024.101273. eCollection 2024 Dec.
6
From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders.
World J Gastroenterol. 2024 Jun 21;30(23):2934-2946. doi: 10.3748/wjg.v30.i23.2934.
8
Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies.
Biology (Basel). 2024 Apr 27;13(5):302. doi: 10.3390/biology13050302.
9
Mitochondrial function and gastrointestinal diseases.
Nat Rev Gastroenterol Hepatol. 2024 Aug;21(8):537-555. doi: 10.1038/s41575-024-00931-2. Epub 2024 May 13.
10
Identification and validation of mitophagy-related signatures as a novel prognostic model for colorectal cancer.
Transl Cancer Res. 2024 Feb 29;13(2):782-797. doi: 10.21037/tcr-23-785. Epub 2024 Feb 26.

本文引用的文献

2
Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.
Chem Rev. 2017 Aug 9;117(15):10043-10120. doi: 10.1021/acs.chemrev.7b00042. Epub 2017 Jun 27.
3
Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival.
Genes Dis. 2016 Mar;3(1):82-87. doi: 10.1016/j.gendis.2015.12.002. Epub 2016 Jan 4.
4
Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells.
Cancer Res. 2016 Jul 1;76(13):3904-15. doi: 10.1158/0008-5472.CAN-15-2534. Epub 2016 May 23.
5
Regulators of mitochondrial dynamics in cancer.
Curr Opin Cell Biol. 2016 Apr;39:43-52. doi: 10.1016/j.ceb.2016.02.001. Epub 2016 Feb 18.
6
Autophagy in colorectal cancer: An important switch from physiology to pathology.
World J Gastrointest Oncol. 2015 Nov 15;7(11):271-84. doi: 10.4251/wjgo.v7.i11.271.
8
Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics.
Semin Cell Dev Biol. 2015 Mar;39:43-55. doi: 10.1016/j.semcdb.2015.02.013. Epub 2015 Feb 25.
9
Autophagy in malignant transformation and cancer progression.
EMBO J. 2015 Apr 1;34(7):856-80. doi: 10.15252/embj.201490784. Epub 2015 Feb 23.
10
Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth.
Mol Cell. 2015 Feb 5;57(3):537-51. doi: 10.1016/j.molcel.2015.01.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验