Suppr超能文献

免疫检查点介导的前列腺腺癌和黑色素瘤中癌细胞与免疫细胞的相互作用。

Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma.

机构信息

Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.

出版信息

Front Immunol. 2018 Jul 31;9:1786. doi: 10.3389/fimmu.2018.01786. eCollection 2018.

Abstract

Prostate adenocarcinoma (PCa) and melanoma are paradigmatic examples of tumors that are either poorly or highly sensitive to therapies based on monoclonal antibodies directed against regulatory pathways in T lymphocytes [i.e., immune checkpoint blockade (ICB)]. Yet, approximately 40% of melanoma patients are resistant or acquire resistance to ICB. What characterize the microenvironment of PCa and ICB-resistant melanoma are a scanty cytotoxic T cell infiltrate and a strong immune suppression, respectively. Here, we compare the tumor microenvironment in these two subgroups of cancer patients, focusing on some among the most represented immune checkpoint molecules: cytotoxic T lymphocyte-associated antigen-4, programmed death-1, lymphocyte activation gene-3, and T cell immunoglobulin and mucin-domain containing-3. We also report on several examples of crosstalk between cancer and immune cells that are mediated by inhibitory immune checkpoints and identify promising strategies aimed at overcoming ICB resistance both in PCa and melanoma.

摘要

前列腺腺癌(PCa)和黑色素瘤是两种典型的肿瘤,它们对基于针对 T 淋巴细胞调节途径的单克隆抗体的治疗要么效果很差,要么效果很好[即免疫检查点阻断(ICB)]。然而,大约 40%的黑色素瘤患者对 ICB 有耐药性或获得耐药性。PCa 和 ICB 耐药性黑色素瘤的特征分别是细胞毒性 T 细胞浸润稀少和强烈的免疫抑制。在这里,我们比较了这两组癌症患者的肿瘤微环境,重点关注一些最具代表性的免疫检查点分子:细胞毒性 T 淋巴细胞相关抗原 4、程序性死亡受体 1、淋巴细胞激活基因 3 和 T 细胞免疫球蛋白和粘蛋白结构域 3。我们还报告了一些由抑制性免疫检查点介导的癌细胞与免疫细胞之间的串扰的例子,并确定了一些有希望的策略,旨在克服 PCa 和黑色素瘤中的 ICB 耐药性。

相似文献

1
Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma.
Front Immunol. 2018 Jul 31;9:1786. doi: 10.3389/fimmu.2018.01786. eCollection 2018.
2
T cell checkpoint regulators in the heart.
Cardiovasc Res. 2019 Apr 15;115(5):869-877. doi: 10.1093/cvr/cvz025.
3
Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.
J Biol Chem. 2017 Nov 10;292(45):18530-18541. doi: 10.1074/jbc.M117.808121. Epub 2017 Sep 14.
4
Atypical autoimmune adverse effects with checkpoint blockade therapies.
Ann Oncol. 2017 Feb 1;28(2):206-207. doi: 10.1093/annonc/mdw658.
5
Recent advances in the clinical development of immune checkpoint blockade therapy.
Cell Oncol (Dordr). 2019 Oct;42(5):609-626. doi: 10.1007/s13402-019-00456-w. Epub 2019 Jun 14.
6
Treg-mediated acquired resistance to immune checkpoint inhibitors.
Cancer Lett. 2019 Aug 10;457:168-179. doi: 10.1016/j.canlet.2019.05.003. Epub 2019 May 9.
7
Immune checkpoint inhibitors.
J Cell Biol. 2019 Mar 4;218(3):740-741. doi: 10.1083/jcb.201810035. Epub 2019 Feb 13.
8
Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors.
Int Immunopharmacol. 2018 Sep;62:29-39. doi: 10.1016/j.intimp.2018.06.001. Epub 2018 Jul 2.
9
Immunopathogenesis of Immune Checkpoint Inhibitor-Related Adverse Events: Roles of the Intestinal Microbiome and Th17 Cells.
Front Immunol. 2019 Sep 26;10:2254. doi: 10.3389/fimmu.2019.02254. eCollection 2019.
10
Emerging Immunotargets and Immunotherapies in Prostate Cancer.
Curr Drug Targets. 2016;17(7):777-82. doi: 10.2174/1389450117666160217123304.

引用本文的文献

1
Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment.
Cancers (Basel). 2023 Jun 11;15(12):3147. doi: 10.3390/cancers15123147.
2
Gene-guided OX40L anchoring to tumor cells for synergetic tumor "self-killing" immunotherapy.
Bioact Mater. 2022 Jul 17;25:689-700. doi: 10.1016/j.bioactmat.2022.07.008. eCollection 2023 Jul.
4
Progression in immunotherapy for advanced prostate cancer.
Front Oncol. 2023 Feb 28;13:1126752. doi: 10.3389/fonc.2023.1126752. eCollection 2023.
5
Immunoproteasome inhibition prevents progression of castration-resistant prostate cancer.
Br J Cancer. 2023 Mar;128(7):1377-1390. doi: 10.1038/s41416-022-02129-2. Epub 2023 Jan 21.
6
Influence of Androgen Deprivation Therapy on the PD-L1 Expression and Immune Activity in Prostate Cancer Tissue.
Front Mol Biosci. 2022 Jun 28;9:878353. doi: 10.3389/fmolb.2022.878353. eCollection 2022.
7
Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer.
Front Immunol. 2022 Apr 28;13:859785. doi: 10.3389/fimmu.2022.859785. eCollection 2022.
9
Targeting myeloid-derived suppressor cells for cancer therapy.
Cancer Biol Med. 2021 Aug 17;18(4):992-1009. doi: 10.20892/j.issn.2095-3941.2020.0806.
10
The potential of CAR T cell therapy for prostate cancer.
Nat Rev Urol. 2021 Sep;18(9):556-571. doi: 10.1038/s41585-021-00488-8. Epub 2021 Jul 8.

本文引用的文献

1
BRAF and MEK Inhibitors Increase PD-1-Positive Melanoma Cells Leading to a Potential Lymphocyte-Independent Synergism with Anti-PD-1 Antibody.
Clin Cancer Res. 2018 Jul 15;24(14):3377-3385. doi: 10.1158/1078-0432.CCR-17-1914. Epub 2018 Apr 12.
2
Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.
Cancer Cell. 2018 Apr 9;33(4):649-663.e4. doi: 10.1016/j.ccell.2018.02.010. Epub 2018 Mar 22.
5
Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade.
Cancer Immunol Res. 2018 Feb;6(2):189-200. doi: 10.1158/2326-6066.CIR-17-0356. Epub 2018 Jan 16.
6
Analysis of Drug Development Paradigms for Immune Checkpoint Inhibitors.
Clin Cancer Res. 2018 Apr 15;24(8):1785-1794. doi: 10.1158/1078-0432.CCR-17-1970. Epub 2017 Dec 6.
7
Interferon-γ Signaling in Melanocytes and Melanoma Cells Regulates Expression of CTLA-4.
Cancer Res. 2018 Jan 15;78(2):436-450. doi: 10.1158/0008-5472.CAN-17-1615. Epub 2017 Nov 17.
9
The diverse functions of the PD1 inhibitory pathway.
Nat Rev Immunol. 2018 Mar;18(3):153-167. doi: 10.1038/nri.2017.108. Epub 2017 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验