Suppr超能文献

T 细胞功能障碍和耗竭的特征可预测癌症免疫疗法的反应。

Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Nat Med. 2018 Oct;24(10):1550-1558. doi: 10.1038/s41591-018-0136-1. Epub 2018 Aug 20.

Abstract

Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9, demonstrating utility for immunotherapy research.

摘要

免疫检查点阻断 (ICB) 的癌症治疗可以带来持久的临床获益,但只有一部分患者对治疗有反应。为了预测 ICB 反应,我们开发了 TIDE,这是一种用于模拟肿瘤免疫逃逸两种主要机制的计算方法:高浸润细胞毒性 T 淋巴细胞 (CTL) 的肿瘤中 T 细胞功能障碍的诱导,以及低 CTL 水平肿瘤中 T 细胞浸润的预防。我们通过测试肿瘤中每个基因的表达如何与 CTL 浸润水平相互作用来影响患者的生存,从大型肿瘤队列中确定了 T 细胞功能障碍的特征。我们还使用免疫抑制性细胞的表达特征来模拟排除 T 细胞浸润到肿瘤中的因素。使用该框架和预处理 RNA-Seq 或 NanoString 肿瘤表达谱,TIDE 比其他生物标志物(如 PD-L1 水平和突变负荷)更准确地预测了接受一线抗 PD1 或抗 CTLA4 治疗的黑色素瘤患者的结局。TIDE 还揭示了新的候选 ICB 耐药调节剂,如 SERPINB9,为免疫治疗研究提供了实用价值。

相似文献

1
Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.
Nat Med. 2018 Oct;24(10):1550-1558. doi: 10.1038/s41591-018-0136-1. Epub 2018 Aug 20.
2
Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity.
Cancer Immunol Immunother. 2019 Jul;68(7):1095-1106. doi: 10.1007/s00262-019-02346-4. Epub 2019 May 18.
3
Augmentation of Immune Checkpoint Cancer Immunotherapy with IL18.
Clin Cancer Res. 2016 Jun 15;22(12):2969-80. doi: 10.1158/1078-0432.CCR-15-1655. Epub 2016 Jan 11.
8
Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma.
Clin Cancer Res. 2017 Sep 1;23(17):5024-5033. doi: 10.1158/1078-0432.CCR-16-0698. Epub 2017 May 16.
9
Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
Drug Resist Updat. 2020 Dec;53:100718. doi: 10.1016/j.drup.2020.100718. Epub 2020 Jul 15.
10
Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice.
J Immunother. 2015 Feb-Mar;38(2):54-61. doi: 10.1097/CJI.0000000000000064.

引用本文的文献

2
Elevated THOC5 expression in liver cancer and its implications for tumor progression and therapeutic response.
Front Med (Lausanne). 2025 Aug 18;12:1596120. doi: 10.3389/fmed.2025.1596120. eCollection 2025.
3
SMC2 as a potential prognostic biomarker in lung adenocarcinoma and its correlation with immune microenvironment.
Mol Clin Oncol. 2025 Aug 12;23(4):93. doi: 10.3892/mco.2025.2888. eCollection 2025 Oct.
4
PDPN+ cancer-associated fibroblasts correlate with the neoadjuvant immunotherapy response in gastric cancer.
APL Bioeng. 2025 Aug 28;9(3):036115. doi: 10.1063/5.0250475. eCollection 2025 Sep.
5
Machine Learning-Derived Neddylation Gene Signature for Predicting Prognosis and Immunotherapy Benefits in Colorectal Cancer.
Immunotargets Ther. 2025 Aug 25;14:931-952. doi: 10.2147/ITT.S532644. eCollection 2025.
7
Comprehensive analysis of MAGE-A10 in pan-cancer and its validation in gastric cancer.
Sci Rep. 2025 Sep 1;15(1):32077. doi: 10.1038/s41598-025-17987-y.
8
AEBP1 drives fibroblast-mediated T cell dysfunction in tumors.
Nat Commun. 2025 Sep 1;16(1):8171. doi: 10.1038/s41467-025-63659-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验