Suppr超能文献

临床和兽医杀锥虫苯并恶唑类化合物靶向 CPSF3。

Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.

机构信息

The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom.

Anacor Pharmaceuticals, Inc., Palo Alto, CA 94303.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9616-9621. doi: 10.1073/pnas.1807915115. Epub 2018 Sep 5.

Abstract

African trypanosomes cause lethal and neglected tropical diseases, known as sleeping sickness in humans and nagana in animals. Current therapies are limited, but fortunately, promising therapies are in advanced clinical and veterinary development, including acoziborole (AN5568 or SCYX-7158) and AN11736, respectively. These benzoxaboroles will likely be key to the World Health Organization's target of disease control by 2030. Their mode of action was previously unknown. We have developed a high-coverage overexpression library and use it here to explore drug mode of action in Initially, an inhibitor with a known target was used to select for drug resistance and to test massive parallel library screening and genome-wide mapping; this effectively identified the known target and validated the approach. Subsequently, the overexpression screening approach was used to identify the target of the benzoxaboroles, Cleavage and Polyadenylation Specificity Factor 3 (CPSF3, Tb927.4.1340). We validated the CPSF3 endonuclease as the target, using independent overexpression strains. Knockdown provided genetic validation of CPSF3 as essential, and GFP tagging confirmed the expected nuclear localization. Molecular docking and CRISPR-Cas9-based editing demonstrated how acoziborole can specifically block the active site and mRNA processing by parasite, but not host CPSF3. Thus, our findings provide both genetic and chemical validation for CPSF3 as an important drug target in trypanosomes and reveal inhibition of mRNA maturation as the mode of action of the trypanocidal benzoxaboroles. Understanding the mechanism of action of benzoxaborole-based therapies can assist development of improved therapies, as well as the prediction and monitoring of resistance, if or when it arises.

摘要

非洲锥体虫引起致命的和被忽视的热带病,在人类中称为昏睡病,在动物中称为那加那病。目前的治疗方法有限,但幸运的是,有前途的治疗方法正在临床和兽医领域进行高级开发,包括 acoziborole(AN5568 或 SCYX-7158)和 AN11736。这些苯并恶唑类化合物可能是世界卫生组织到 2030 年控制疾病目标的关键。它们的作用模式以前是未知的。我们开发了一个高覆盖率的过表达文库,并在这里用于探索药物作用模式。最初,使用具有已知靶标的抑制剂选择耐药性,并测试大规模平行文库筛选和全基因组图谱;这有效地确定了已知的靶标并验证了该方法。随后,过表达筛选方法用于鉴定苯并恶唑类化合物的靶标,即切割和多聚腺苷酸化特异性因子 3(CPSF3,Tb927.4.1340)。我们使用独立的过表达株验证了 CPSF3 内切酶作为靶标。敲低提供了 CPSF3 作为必需基因的遗传验证,GFP 标记证实了预期的核定位。分子对接和基于 CRISPR-Cas9 的编辑证明了 acoziborole 如何特异性地阻断寄生虫的活性位点和 mRNA 加工,但不能阻断宿主 CPSF3。因此,我们的研究结果为 CPSF3 作为锥体虫中的重要药物靶标提供了遗传和化学验证,并揭示了抑制 mRNA 成熟作为苯并恶唑类杀锥体虫药物的作用模式。了解苯并恶唑类治疗的作用机制可以帮助开发改进的治疗方法,以及在出现或出现时预测和监测耐药性。

相似文献

1
Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9616-9621. doi: 10.1073/pnas.1807915115. Epub 2018 Sep 5.
2
The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing.
PLoS Pathog. 2018 Sep 25;14(9):e1007315. doi: 10.1371/journal.ppat.1007315. eCollection 2018 Sep.
3
Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs.
PLoS Pathog. 2020 Nov 3;16(11):e1008932. doi: 10.1371/journal.ppat.1008932. eCollection 2020 Nov.
5
Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3.
Cell Chem Biol. 2024 Jan 18;31(1):139-149.e14. doi: 10.1016/j.chembiol.2023.10.019. Epub 2023 Nov 14.
6
Clinically relevant benzoxaboroles inhibit mRNA processing in Trypanosoma brucei.
BMC Res Notes. 2022 Dec 17;15(1):371. doi: 10.1186/s13104-022-06258-y.
7
Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole.
PLoS Negl Trop Dis. 2021 Nov 9;15(11):e0009939. doi: 10.1371/journal.pntd.0009939. eCollection 2021 Nov.
8
High-throughput decoding of drug targets and drug resistance mechanisms in African trypanosomes.
Parasitology. 2014 Jan;141(1):77-82. doi: 10.1017/S0031182013000243. Epub 2013 Apr 8.
9
Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles.
PLoS Pathog. 2018 Feb 9;14(2):e1006850. doi: 10.1371/journal.ppat.1006850. eCollection 2018 Feb.
10

引用本文的文献

2
Next generation genetic screens in kinetoplastids.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf515.
3
Transforming the chemotherapy of human African trypanosomiasis.
Clin Microbiol Rev. 2025 Mar 13;38(1):e0015323. doi: 10.1128/cmr.00153-23. Epub 2025 Jan 8.
5
The carbonic anhydrase enzymes as new targets for the management of neglected tropical diseases.
Arch Pharm (Weinheim). 2025 Jan;358(1):e2400626. doi: 10.1002/ardp.202400626. Epub 2024 Nov 9.
6
Post-transcriptional reprogramming by thousands of mRNA untranslated regions in trypanosomes.
Nat Commun. 2024 Sep 16;15(1):8113. doi: 10.1038/s41467-024-52432-0.
7
Cell-active small molecule inhibitors validate the SNM1A DNA repair nuclease as a cancer target.
Chem Sci. 2024 Apr 30;15(21):8227-8241. doi: 10.1039/d4sc00367e. eCollection 2024 May 29.
9
Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer.
Sci Adv. 2023 Nov 24;9(47):eadj0123. doi: 10.1126/sciadv.adj0123. Epub 2023 Nov 22.
10
The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa.
Open Res Eur. 2022 Aug 15;2:67. doi: 10.12688/openreseurope.14759.2. eCollection 2022.

本文引用的文献

2
Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei.
PLoS Negl Trop Dis. 2018 May 14;12(5):e0006450. doi: 10.1371/journal.pntd.0006450. eCollection 2018 May.
3
Melarsoprol Resistance in African Trypanosomiasis.
Trends Parasitol. 2018 Jun;34(6):481-492. doi: 10.1016/j.pt.2018.04.002. Epub 2018 Apr 25.
4
Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles.
PLoS Pathog. 2018 Feb 9;14(2):e1006850. doi: 10.1371/journal.ppat.1006850. eCollection 2018 Feb.
5
Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination?
Trends Parasitol. 2018 Mar;34(3):197-207. doi: 10.1016/j.pt.2017.11.008. Epub 2018 Jan 23.
8
Architecture of eukaryotic mRNA 3'-end processing machinery.
Science. 2017 Nov 24;358(6366):1056-1059. doi: 10.1126/science.aao6535. Epub 2017 Oct 26.
10
Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need.
Nat Rev Microbiol. 2017 Feb 27;15(4):217-231. doi: 10.1038/nrmicro.2016.193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验