Suppr超能文献

大规模并行精确基因组编辑揭示的功能遗传变异

Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2018 Oct 4;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub 2018 Sep 20.

Abstract

A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.

摘要

在遗传学中,一个主要的挑战是识别驱动自然表型变异的遗传变异。然而,目前的遗传图谱绘制方法的分辨率有限。为了解决这一挑战,我们开发了一种基于 CRISPR-Cas9 的高通量基因组编辑方法,该方法可以在单个实验中引入数千种特定的遗传变异。这使我们能够研究酵母中 16006 种自然遗传变异的适应度后果。我们在葡萄糖培养基中鉴定出 572 个具有显著适应度差异的变异;这些变异高度富集在启动子中,特别是在转录因子结合位点,而只有 19.2%的变异影响氨基酸序列。引人注目的是,附近的变异几乎总是有利于同一亲本的等位基因,这表明谱系特异性选择通常是由多个聚集的变异驱动的。总之,我们的基因组编辑方法以单碱基分辨率揭示了适应度变化的遗传结构,并且可以适应测量任何细胞存活或可分选标记筛选中全基因组遗传变异的影响。

相似文献

1
Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
Cell. 2018 Oct 4;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub 2018 Sep 20.
2
3
CRISPR Nickase-Mediated Base Editing in Yeast.
Methods Mol Biol. 2021;2196:27-37. doi: 10.1007/978-1-0716-0868-5_3.
4
Perturbing proteomes at single residue resolution using base editing.
Nat Commun. 2020 Apr 20;11(1):1871. doi: 10.1038/s41467-020-15796-7.
5
CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications.
Microb Cell Fact. 2019 Apr 2;18(1):63. doi: 10.1186/s12934-019-1112-2.
6
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.01834-18. Print 2018 Dec 1.
7
Development and application of CRISPR/Cas9 technologies in genomic editing.
Hum Mol Genet. 2018 Aug 1;27(R2):R79-R88. doi: 10.1093/hmg/ddy120.
8
Gene Editing in Sorghum Through Agrobacterium.
Methods Mol Biol. 2019;1931:155-168. doi: 10.1007/978-1-4939-9039-9_11.
9
Accurate analysis of genuine CRISPR editing events with ampliCan.
Genome Res. 2019 May;29(5):843-847. doi: 10.1101/gr.244293.118. Epub 2019 Mar 8.
10
CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling.
Hum Genet. 2017 Jan;136(1):1-12. doi: 10.1007/s00439-016-1739-6. Epub 2016 Nov 2.

引用本文的文献

1
Structural basis of the RNA-mediated Retron-Eco2 oligomerization.
Cell Discov. 2025 Sep 2;11(1):73. doi: 10.1038/s41421-025-00823-y.
2
Predicting natural variation in the yeast phenotypic landscape with machine learning.
Mol Syst Biol. 2025 Sep 1. doi: 10.1038/s44320-025-00136-y.
3
Protein language models reveal evolutionary constraints on synonymous codon choice.
bioRxiv. 2025 Aug 5:2025.08.05.668603. doi: 10.1101/2025.08.05.668603.
6
Experimental evolution in an era of molecular manipulation.
Nat Rev Genet. 2025 Jul 21. doi: 10.1038/s41576-025-00867-6.
8
Disassembly activates Retron-Septu for antiphage defense.
Science. 2025 Jun 12:eadv3344. doi: 10.1126/science.adv3344.
9
Functional synonymous mutations and their evolutionary consequences.
Nat Rev Genet. 2025 May 20. doi: 10.1038/s41576-025-00850-1.
10
Trans-eQTL hotspots shape complex traits by modulating cellular states.
Cell Genom. 2025 May 14;5(5):100873. doi: 10.1016/j.xgen.2025.100873. Epub 2025 May 5.

本文引用的文献

1
Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template.
Commun Biol. 2018 May 31;1:54. doi: 10.1038/s42003-018-0054-2. eCollection 2018.
2
From genome-wide associations to candidate causal variants by statistical fine-mapping.
Nat Rev Genet. 2018 Aug;19(8):491-504. doi: 10.1038/s41576-018-0016-z.
3
High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast.
Nat Biotechnol. 2018 Jul;36(6):540-546. doi: 10.1038/nbt.4147. Epub 2018 May 21.
4
Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
Nat Biotechnol. 2018 Jul;36(6):505-508. doi: 10.1038/nbt.4132. Epub 2018 May 7.
5
Multiplexed precision genome editing with trackable genomic barcodes in yeast.
Nat Biotechnol. 2018 Jul;36(6):512-520. doi: 10.1038/nbt.4137. Epub 2018 May 7.
6
Highly parallel genome variant engineering with CRISPR-Cas9.
Nat Genet. 2018 Apr;50(4):510-514. doi: 10.1038/s41588-018-0087-y. Epub 2018 Apr 9.
7
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
9
DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity.
Cell Rep. 2018 Jan 9;22(2):359-371. doi: 10.1016/j.celrep.2017.12.041.
10
High-resolution mapping of -regulatory variation in budding yeast.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10736-E10744. doi: 10.1073/pnas.1717421114. Epub 2017 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验