Defence Science and Technology Group, Canberra, ACT 2600, Australia.
Centre for Complex Systems, University of Sydney, NSW 2006, Australia.
Phys Rev E. 2018 Aug;98(2-1):022302. doi: 10.1103/PhysRevE.98.022302.
We use the Fisher information to provide a lens on the transition to synchronization of the Kuramoto model of nonidentical frequencies on a variety of undirected graphs. We numerically solve the equations of motion for a N=400 complete graph and N=1000 small-world, scale-free, uniform random, and random regular graphs. For large but finite graphs of small average diameter the Fisher information F as a function of coupling shows a peak closely coinciding with the critical point as determined by Kuramoto's order parameter or synchronization measure r. However, for graphs of larger average diameter the position of the peak in F differs from the critical point determined by estimates of r. On the one hand, this is a finite-size effect even at N=1000; however, we show across a range of topologies that the Fisher information peak points to a transition for smaller graphs that indicates structural changes in the numbers of locally phase-synchronized clusters, often directly from metastable to stable frequency synchronization. Solving explicitly for a two-cluster ansatz subject to Gaussian noise shows that the Fisher infomation peaks at such a transition. We discuss the implications for Fisher information as an indicator for edge-of-chaos phenomena in finite-coupled oscillator systems.
我们利用 Fisher 信息来研究非相同频率的 Kuramoto 模型在各种无向图上的同步转变。我们通过数值求解 N=400 个完全图和 N=1000 个小世界、无标度、均匀随机和随机正则图的运动方程。对于平均直径较小但有限的图,Fisher 信息 F 作为耦合的函数显示出一个峰值,该峰值与 Kuramoto 序参量或同步度量 r 确定的临界点非常吻合。然而,对于平均直径较大的图,F 中的峰值位置与由 r 的估计确定的临界点不同。一方面,即使在 N=1000 时,这也是一个有限大小的效应;然而,我们在一系列拓扑结构中表明,Fisher 信息的峰值指向较小图的转变,表明局部相位同步簇的数量发生了结构变化,通常直接从亚稳到稳定的频率同步。对受高斯噪声影响的两簇假设进行显式求解表明,Fisher 信息在这种转变中达到峰值。我们讨论了 Fisher 信息作为有限耦合振荡器系统混沌边缘现象的指示的意义。