Department Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland.
Nat Med. 2018 Oct;24(10):1519-1525. doi: 10.1038/s41591-018-0209-1. Epub 2018 Oct 8.
CRISPR-Cas-based genome editing holds great promise for targeting genetic disorders, including inborn errors of hepatocyte metabolism. Precise correction of disease-causing mutations in adult tissues in vivo, however, is challenging. It requires repair of Cas9-induced double-stranded DNA (dsDNA) breaks by homology-directed mechanisms, which are highly inefficient in nondividing cells. Here we corrected the disease phenotype of adult phenylalanine hydroxylase (Pah) mice, a model for the human autosomal recessive liver disease phenylketonuria (PKU), using recently developed CRISPR-Cas-associated base editors. These systems enable conversion of C∙G to T∙A base pairs and vice versa, independent of dsDNA break formation and homology-directed repair (HDR). We engineered and validated an intein-split base editor, which allows splitting of the fusion protein into two parts, thereby circumventing the limited cargo capacity of adeno-associated virus (AAV) vectors. Intravenous injection of AAV-base editor systems resulted in Pah gene correction rates that restored physiological blood phenylalanine (L-Phe) levels below 120 µmol/l [5]. We observed mRNA correction rates up to 63%, restoration of phenylalanine hydroxylase (PAH) enzyme activity, and reversion of the light fur phenotype in Pah mice. Our findings suggest that targeting genetic diseases in vivo using AAV-mediated delivery of base-editing agents is feasible, demonstrating potential for therapeutic application.
基于 CRISPR-Cas 的基因组编辑在靶向遗传疾病方面具有巨大的潜力,包括肝细胞代谢的先天性错误。然而,在体内对成年组织中的致病突变进行精确纠正具有挑战性。它需要通过同源定向机制修复 Cas9 诱导的双链 DNA(dsDNA)断裂,而在非分裂细胞中,这种机制的效率非常低。在这里,我们使用最近开发的 CRISPR-Cas 相关碱基编辑器纠正了成年苯丙氨酸羟化酶(Pah)小鼠的疾病表型,Pah 小鼠是人类常染色体隐性肝脏疾病苯丙酮尿症(PKU)的模型。这些系统能够独立于 dsDNA 断裂和同源定向修复(HDR)将 C∙G 转换为 T∙A 碱基对,反之亦然。我们设计并验证了一种内含子分裂碱基编辑器,它允许融合蛋白分裂成两个部分,从而避免腺相关病毒(AAV)载体的有限载物能力。AAV-碱基编辑器系统的静脉内注射导致 Pah 基因纠正率恢复生理血液苯丙氨酸(L-Phe)水平低于 120µmol/l[5]。我们观察到高达 63%的 mRNA 纠正率、苯丙氨酸羟化酶(PAH)酶活性的恢复以及 Pah 小鼠中浅色皮毛表型的反转。我们的研究结果表明,使用 AAV 介导的碱基编辑剂在体内靶向遗传疾病是可行的,这表明了治疗应用的潜力。