Suppr超能文献

在成年小鼠中通过体内基因组碱基编辑治疗代谢性肝病。

Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.

机构信息

Department Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.

Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland.

出版信息

Nat Med. 2018 Oct;24(10):1519-1525. doi: 10.1038/s41591-018-0209-1. Epub 2018 Oct 8.

Abstract

CRISPR-Cas-based genome editing holds great promise for targeting genetic disorders, including inborn errors of hepatocyte metabolism. Precise correction of disease-causing mutations in adult tissues in vivo, however, is challenging. It requires repair of Cas9-induced double-stranded DNA (dsDNA) breaks by homology-directed mechanisms, which are highly inefficient in nondividing cells. Here we corrected the disease phenotype of adult phenylalanine hydroxylase (Pah) mice, a model for the human autosomal recessive liver disease phenylketonuria (PKU), using recently developed CRISPR-Cas-associated base editors. These systems enable conversion of C∙G to T∙A base pairs and vice versa, independent of dsDNA break formation and homology-directed repair (HDR). We engineered and validated an intein-split base editor, which allows splitting of the fusion protein into two parts, thereby circumventing the limited cargo capacity of adeno-associated virus (AAV) vectors. Intravenous injection of AAV-base editor systems resulted in Pah gene correction rates that restored physiological blood phenylalanine (L-Phe) levels below 120 µmol/l [5]. We observed mRNA correction rates up to 63%, restoration of phenylalanine hydroxylase (PAH) enzyme activity, and reversion of the light fur phenotype in Pah mice. Our findings suggest that targeting genetic diseases in vivo using AAV-mediated delivery of base-editing agents is feasible, demonstrating potential for therapeutic application.

摘要

基于 CRISPR-Cas 的基因组编辑在靶向遗传疾病方面具有巨大的潜力,包括肝细胞代谢的先天性错误。然而,在体内对成年组织中的致病突变进行精确纠正具有挑战性。它需要通过同源定向机制修复 Cas9 诱导的双链 DNA(dsDNA)断裂,而在非分裂细胞中,这种机制的效率非常低。在这里,我们使用最近开发的 CRISPR-Cas 相关碱基编辑器纠正了成年苯丙氨酸羟化酶(Pah)小鼠的疾病表型,Pah 小鼠是人类常染色体隐性肝脏疾病苯丙酮尿症(PKU)的模型。这些系统能够独立于 dsDNA 断裂和同源定向修复(HDR)将 C∙G 转换为 T∙A 碱基对,反之亦然。我们设计并验证了一种内含子分裂碱基编辑器,它允许融合蛋白分裂成两个部分,从而避免腺相关病毒(AAV)载体的有限载物能力。AAV-碱基编辑器系统的静脉内注射导致 Pah 基因纠正率恢复生理血液苯丙氨酸(L-Phe)水平低于 120µmol/l[5]。我们观察到高达 63%的 mRNA 纠正率、苯丙氨酸羟化酶(PAH)酶活性的恢复以及 Pah 小鼠中浅色皮毛表型的反转。我们的研究结果表明,使用 AAV 介导的碱基编辑剂在体内靶向遗传疾病是可行的,这表明了治疗应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验