Suppr超能文献

基于基因组的细菌抗生素耐药性预测。

Genome-Based Prediction of Bacterial Antibiotic Resistance.

机构信息

Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA.

Antimicrobial Resistance and Therapeutic Discovery Training Program, Emory University, Atlanta, Georgia, USA.

出版信息

J Clin Microbiol. 2019 Feb 27;57(3). doi: 10.1128/JCM.01405-18. Print 2019 Mar.

Abstract

Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.

摘要

临床微生物学长期以来一直依赖于培养细菌来确定抗菌药物敏感性谱,但现在使用全基因组测序进行抗生素敏感性测试(WGS-AST)是一种强大的替代方法。本文讨论了实现这一目标的技术,并介绍了基于基因组序列预测耐药性的最新研究结果。我们考察了基于简单存在或不存在先前已知基因和单核苷酸多态性(SNP)来调用抗生素耐药性谱的方法与使用机器学习和统计模型的方法之间的差异。通常,基于基因组的预测的局限性不仅来自于基于培养的 AST 在准确性方面的局限性,还来自于对耐药性遗传基础的不完全了解。然而,即使基于基因组的预测变得更加广泛,我们也需要保持表型测试,以确保结果不会随时间推移而出现偏差。我们认为,通过用具有明确遗传多样性的一致表型菌株集进行挑战来标准化 WGS-AST,对于比较基于基因组序列预测抗生素耐药性的方法的效果是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4692/6425178/2e64ac72d5a9/JCM.01405-18-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验