Suppr超能文献

氢键结合区反平行β-折叠中的链间二硫键(aCSDhs):高度应变、容易断裂的禁链二硫键。

Cross-strand disulfides in the hydrogen bonding site of antiparallel β-sheet (aCSDhs): Forbidden disulfides that are highly strained, easily broken.

机构信息

Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.

Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.

出版信息

Protein Sci. 2019 Jan;28(1):239-256. doi: 10.1002/pro.3545.

Abstract

Some disulfide bonds perform important structural roles in proteins, but another group has functional roles via redox reactions. Forbidden disulfides are stressed disulfides found in recognizable protein contexts, which currently constitute more than 10% of all disulfides in the PDB. They likely have functional redox roles and constitute a major subset of all redox-active disulfides. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. Previously we characterized the most abundant forbidden disulfide in the Protein Data Bank, the aCSDn: a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen-bonded moieties are directed away from each other. Here we perform a similar analysis for the aCSDh, a less common motif in which the opposed cysteine residues are backbone hydrogen bonded. Oxidation of two Cys in this context places significant strain on the protein system, with the β-chains tilting toward each other to allow disulfide formation. Only left-handed aCSDh conformations are compatible with the inherent right-handed twist of β-sheets. aCSDhs tend to be more highly strained than aCSDns, particularly when both hydrogen bonds are formed. We discuss characterized roles of aCSDh motifs in proteins of the dataset, which include catalytic disulfides in ribonucleotide reductase and ahpC peroxidase as well as a redox-active disulfide in P1 lysozyme, involved in a major conformation change. The dataset also includes many binding proteins.

摘要

一些二硫键在蛋白质中发挥重要的结构作用,但另一组二硫键通过氧化还原反应发挥功能作用。禁止性二硫键是在可识别的蛋白质结构中发现的应激性二硫键,目前占 PDB 中所有二硫键的 10%以上。它们可能具有功能氧化还原作用,构成所有氧化还原活性二硫键的主要子集。禁止性二硫键的扭转应变通常高于结构二硫键,但高到足以使它们在生理正常条件下立即容易还原。此前,我们对蛋白质数据库中最丰富的禁止性二硫键 aCSDn 进行了特征描述:一个典型的模体,其中二硫键结合的半胱氨酸残基直接位于相邻的反平行 β-链上彼此相对,使得骨架氢键结合的部分彼此远离。在这里,我们对不太常见的 aCSDh 进行了类似的分析,其中相对的半胱氨酸残基是骨架氢键结合的。在这种情况下,两个 Cys 的氧化会使蛋白质系统承受很大的压力,β 链相互倾斜以允许二硫键形成。只有左手 aCSDh 构象与β-片层固有的右旋扭曲相容。aCSDhs 往往比 aCSDns 更具应变性,尤其是当两个氢键都形成时。我们讨论了数据集蛋白中 aCSDh 模体的特征作用,包括核苷酸还原酶和 ahpC 过氧化物酶中的催化二硫键,以及 P1 溶菌酶中的氧化还原活性二硫键,参与主要构象变化。该数据集还包括许多结合蛋白。

相似文献

2
"Forbidden" disulfides: their role as redox switches.
Curr Protein Pept Sci. 2007 Oct;8(5):484-95. doi: 10.2174/138920307782411464.
3
High torsional energy disulfides: relationship between cross-strand disulfides and right-handed staples.
J Bioinform Comput Biol. 2006 Feb;4(1):155-68. doi: 10.1142/s0219720006001734.
4
Protein stabilization by introduction of cross-strand disulfides.
Biochemistry. 2005 Nov 8;44(44):14638-46. doi: 10.1021/bi050921s.
8
Disulfides as redox switches: from molecular mechanisms to functional significance.
Antioxid Redox Signal. 2010 Jan;12(1):53-91. doi: 10.1089/ars.2009.2510.
10
Conformational changes in redox pairs of protein structures.
Protein Sci. 2009 Aug;18(8):1745-65. doi: 10.1002/pro.175.

引用本文的文献

2
Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation.
Molecules. 2023 Jun 24;28(13):4970. doi: 10.3390/molecules28134970.
4
A novel posttranslational modification of histone, H3 S-sulfhydration, is down-regulated in asthenozoospermic sperm.
J Assist Reprod Genet. 2021 Dec;38(12):3175-3193. doi: 10.1007/s10815-021-02314-x. Epub 2021 Oct 18.
5
Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.
Front Pharmacol. 2015 Mar 10;6:1. doi: 10.3389/fphar.2015.00001. eCollection 2015.

本文引用的文献

2
Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.
Nature. 2015 Oct 8;526(7572):277-80. doi: 10.1038/nature14972. Epub 2015 Sep 28.
3
Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2156-65. doi: 10.1073/pnas.1501690112. Epub 2015 Mar 30.
4
Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.
Front Pharmacol. 2015 Mar 10;6:1. doi: 10.3389/fphar.2015.00001. eCollection 2015.
5
Evaluating the stability of disulfide bridges in proteins: a torsional potential energy surface for diethyl disulfide.
Mol Simul. 2007 May;33(6-8):475-485. doi: 10.1080/08927020701361876. Epub 2007 Aug 15.
6
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
7
InterPro in 2011: new developments in the family and domain prediction database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12. doi: 10.1093/nar/gkr948. Epub 2011 Nov 16.
9
Crystal structure of epstein-barr virus DNA polymerase processivity factor BMRF1.
J Biol Chem. 2009 Dec 18;284(51):35896-905. doi: 10.1074/jbc.M109.051581.
10
Disulfides as redox switches: from molecular mechanisms to functional significance.
Antioxid Redox Signal. 2010 Jan;12(1):53-91. doi: 10.1089/ars.2009.2510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验