Suppr超能文献

结合精确的肿瘤基因组模拟和众包基准测试体细胞结构变异检测。

Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection.

机构信息

Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.

出版信息

Genome Biol. 2018 Nov 6;19(1):188. doi: 10.1186/s13059-018-1539-5.

Abstract

BACKGROUND

The phenotypes of cancer cells are driven in part by somatic structural variants. Structural variants can initiate tumors, enhance their aggressiveness, and provide unique therapeutic opportunities. Whole-genome sequencing of tumors can allow exhaustive identification of the specific structural variants present in an individual cancer, facilitating both clinical diagnostics and the discovery of novel mutagenic mechanisms. A plethora of somatic structural variant detection algorithms have been created to enable these discoveries; however, there are no systematic benchmarks of them. Rigorous performance evaluation of somatic structural variant detection methods has been challenged by the lack of gold standards, extensive resource requirements, and difficulties arising from the need to share personal genomic information.

RESULTS

To facilitate structural variant detection algorithm evaluations, we create a robust simulation framework for somatic structural variants by extending the BAMSurgeon algorithm. We then organize and enable a crowdsourced benchmarking within the ICGC-TCGA DREAM Somatic Mutation Calling Challenge (SMC-DNA). We report here the results of structural variant benchmarking on three different tumors, comprising 204 submissions from 15 teams. In addition to ranking methods, we identify characteristic error profiles of individual algorithms and general trends across them. Surprisingly, we find that ensembles of analysis pipelines do not always outperform the best individual method, indicating a need for new ways to aggregate somatic structural variant detection approaches.

CONCLUSIONS

The synthetic tumors and somatic structural variant detection leaderboards remain available as a community benchmarking resource, and BAMSurgeon is available at https://github.com/adamewing/bamsurgeon .

摘要

背景

癌细胞的表型部分受体细胞结构变异驱动。结构变异可以引发肿瘤,增强其侵袭性,并提供独特的治疗机会。对肿瘤进行全基因组测序可以彻底识别个体癌症中存在的特定结构变异,从而促进临床诊断和新诱变机制的发现。已经创建了大量的体细胞结构变异检测算法来实现这些发现;然而,它们并没有系统的基准。由于缺乏黄金标准、资源需求广泛以及需要共享个人基因组信息所带来的困难,体细胞结构变异检测方法的严格性能评估一直受到挑战。

结果

为了促进结构变异检测算法的评估,我们通过扩展 BAMSurgeon 算法创建了一个稳健的体细胞结构变异模拟框架。然后,我们在 ICGC-TCGA DREAM 体细胞突变调用挑战 (SMC-DNA) 中组织并启用了众包基准测试。我们在此报告了针对三种不同肿瘤的结构变异基准测试结果,共有来自 15 个团队的 204 项提交。除了排名方法外,我们还确定了个别算法的特征错误模式和它们之间的一般趋势。令人惊讶的是,我们发现分析管道的集合并不总是优于最佳的单个方法,这表明需要新的方法来整合体细胞结构变异检测方法。

结论

合成肿瘤和体细胞结构变异检测排行榜仍然作为一个社区基准测试资源可用,BAMSurgeon 可在 https://github.com/adamewing/bamsurgeon 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd4/6219177/753aab02bf01/13059_2018_1539_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验