Suppr超能文献

比较不同器官特异性内皮细胞在微血管形成和内皮屏障功能方面的差异。

Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.

机构信息

School of Integrated Design Engineering, Keio University, Japan.

Sohyaku, Innovative Research Division, Research Unit/Immunology & Inflammation, Mitsubishi Tanabe Pharma Corporation, Japan.

出版信息

Microvasc Res. 2019 Mar;122:60-70. doi: 10.1016/j.mvr.2018.11.007. Epub 2018 Nov 22.

Abstract

Every organ demonstrates specific vascular characteristics and functions maintained by interactions of endothelial cells (ECs) and parenchymal cells. Particularly, brain ECs play a central role in the formation of a functional blood brain barrier (BBB). Organ-specific ECs have their own morphological features, and organ specificity must be considered when investigating interactions between ECs and other cell types constituting a target organ. Here we constructed angiogenesis-based microvascular networks with perivascular cells in a microfluidic device setting by coculturing ECs and mesenchymal stem cells (MSCs). Furthermore, we analyzed endothelial barrier functions as well as fundamental morphology, an essential step to build an in vitro BBB model. In particular, we used both brain microvascular ECs (BMECs) and human umbilical vein ECs (HUVECs) to test if organ specificity of ECs affects the formation processes and endothelial barrier functions of an engineered microvascular network. We found that microvascular formation processes differed by the source of ECs. HUVECs formed more extensive microvascular networks compared to BMECs while no differences were observed between BMECs and HUVECs in terms of both the microvascular diameter and the number of pericytes peripherally associated with the microvasculatures. To compare the endothelial barrier functions of each type of EC, we performed fluorescence dextran perfusion on constructed microvasculatures. The permeability coefficient of BMEC microvasculatures was significantly lower than that of HUVEC microvasculatures. In addition, there were significant differences in terms of tight junction protein expression. These results suggest that the organ source of ECs influences the properties of engineered microvasculature and thus is a factor to be considered in the design of organ-specific cell culture models.

摘要

每个器官都表现出特定的血管特征和功能,这些特征和功能是由内皮细胞(ECs)和实质细胞相互作用维持的。特别是,脑 ECs 在形成功能性血脑屏障(BBB)中发挥核心作用。器官特异性 ECs 具有其自身的形态特征,在研究构成靶器官的 ECs 与其他细胞类型之间的相互作用时,必须考虑器官特异性。在这里,我们通过共培养 ECs 和间充质干细胞(MSCs),在微流控装置中构建了基于血管生成的具有血管周细胞的微血管网络。此外,我们分析了内皮屏障功能以及基本形态,这是构建体外 BBB 模型的重要步骤。特别是,我们使用脑微血管内皮细胞(BMECs)和人脐静脉内皮细胞(HUVECs)来测试 ECs 的器官特异性是否会影响工程化微血管网络的形成过程和内皮屏障功能。我们发现,ECs 的来源会影响微血管形成过程。与 BMECs 相比,HUVECs 形成了更广泛的微血管网络,而在微血管直径和周细胞数量方面,BMECs 和 HUVECs 之间没有差异。为了比较每种类型 EC 的内皮屏障功能,我们在构建的微血管上进行了荧光葡聚糖灌注。BMEC 微血管的渗透率系数明显低于 HUVEC 微血管。此外,紧密连接蛋白表达也存在显著差异。这些结果表明,ECs 的器官来源会影响工程化微血管的特性,因此在设计器官特异性细胞培养模型时需要考虑这一因素。

相似文献

1
Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
Microvasc Res. 2019 Mar;122:60-70. doi: 10.1016/j.mvr.2018.11.007. Epub 2018 Nov 22.
3
Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels.
Tissue Eng Part A. 2015 Aug;21(15-16):2166-76. doi: 10.1089/ten.TEA.2014.0545. Epub 2015 May 29.
6
Microfluidic Device Setting by Coculturing Endothelial Cells and Mesenchymal Stem Cells.
Methods Mol Biol. 2021;2206:57-66. doi: 10.1007/978-1-0716-0916-3_6.
7
In vitro models of the blood-brain barrier.
Methods Mol Biol. 2014;1135:415-37. doi: 10.1007/978-1-4939-0320-7_34.
8
Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells.
Arterioscler Thromb Vasc Biol. 2013 Mar;33(3):489-500. doi: 10.1161/ATVBAHA.112.300893. Epub 2013 Jan 3.
9
Self-assembling 3D vessel-on-chip model with hiPSC-derived astrocytes.
Stem Cell Reports. 2024 Jul 9;19(7):946-956. doi: 10.1016/j.stemcr.2024.05.006. Epub 2024 Jun 13.
10
A pump-free tricellular blood-brain barrier on-a-chip model to understand barrier property and evaluate drug response.
Biotechnol Bioeng. 2020 Apr;117(4):1127-1136. doi: 10.1002/bit.27260. Epub 2020 Jan 18.

引用本文的文献

1
Vascularization of kidney organoids: different strategies and perspectives.
Front Urol. 2024 May 21;4:1355042. doi: 10.3389/fruro.2024.1355042. eCollection 2024.
2
Microfluidic model of the alternative vasculature in neuroblastoma.
In Vitro Model. 2024 Jan 15;3(1):49-63. doi: 10.1007/s44164-023-00064-x. eCollection 2024 Feb.
3
Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation.
APL Bioeng. 2024 Mar 19;8(1):016120. doi: 10.1063/5.0188238. eCollection 2024 Mar.
4
Complex or not too complex? One size does not fit all in next generation microphysiological systems.
iScience. 2024 Feb 12;27(3):109199. doi: 10.1016/j.isci.2024.109199. eCollection 2024 Mar 15.
7
Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models.
Int J Mol Sci. 2023 Aug 11;24(16):12699. doi: 10.3390/ijms241612699.
8
Engineered Human Tissue as A New Platform for Mosquito Bite-Site Biology Investigations.
Insects. 2023 Jun 2;14(6):514. doi: 10.3390/insects14060514.
9
Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies.
Cancer Metastasis Rev. 2023 Jun;42(2):507-541. doi: 10.1007/s10555-023-10100-7. Epub 2023 Apr 1.
10

本文引用的文献

1
Construction of Continuous Capillary Networks Stabilized by Pericyte-like Perivascular Cells.
Tissue Eng Part A. 2019 Mar;25(5-6):499-510. doi: 10.1089/ten.TEA.2018.0186. Epub 2018 Oct 27.
2
Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.
Nat Rev Neurol. 2018 Mar;14(3):133-150. doi: 10.1038/nrneurol.2017.188. Epub 2018 Jan 29.
3
Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and -cadherin balance in mural cell-endothelial cell-regulated barrier function.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8758-8763. doi: 10.1073/pnas.1618333114. Epub 2017 Aug 1.
4
The vascular basement membrane in the healthy and pathological brain.
J Cereb Blood Flow Metab. 2017 Oct;37(10):3300-3317. doi: 10.1177/0271678X17722436. Epub 2017 Jul 28.
5
Blood-brain barrier transport machineries and targeted therapy of brain diseases.
Bioimpacts. 2016;6(4):225-248. doi: 10.15171/bi.2016.30. Epub 2016 Dec 5.
6
Barrier function in the peripheral and central nervous system-a review.
Pflugers Arch. 2017 Jan;469(1):123-134. doi: 10.1007/s00424-016-1920-8. Epub 2016 Dec 12.
7
3D microtumors in vitro supported by perfused vascular networks.
Sci Rep. 2016 Aug 23;6:31589. doi: 10.1038/srep31589.
9
Microfluidic organ-on-chip technology for blood-brain barrier research.
Tissue Barriers. 2016 Jan 28;4(1):e1142493. doi: 10.1080/21688370.2016.1142493. eCollection 2016 Jan-Mar.
10
Tight junction modulation of the blood brain barrier: CNS delivery of small molecules.
Tissue Barriers. 2016 Jan 8;4(1):e1138017. doi: 10.1080/21688370.2015.1138017. eCollection 2016 Jan-Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验