From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
the Laboratorio de Fisicoquímica Biológica and.
J Biol Chem. 2019 Mar 1;294(9):3235-3248. doi: 10.1074/jbc.RA118.006366. Epub 2018 Dec 28.
Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH), most of its functions are replaced by T(SH) in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH) instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH) is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions ( > 5 × 10 m s). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH) (4.8 × 10 m s); however, GSH-mediated reduction was extremely slow (39 m s). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH) in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.
锥虫是具有鞭毛的原生动物寄生虫(动基体目),它们具有基于小分子二硫醇三巯基丁氨酸(T(SH))的独特氧化还原代谢。尽管 GSH 可能仍然在锥虫中发挥着生物学作用,并且是 T(SH)的组成部分,但在这些生物体中,它的大部分功能都被 T(SH)取代。因此,锥虫有几种适应于使用 T(SH)而不是 GSH 的酶,包括谷氧还蛋白(Grx)。然而,Grx 对 T(SH)的特异性的机制基础尚不清楚。在这里,我们结合了快速动力学和生物物理方法,包括 NMR、MS 和荧光标记,来研究唯一存在于锥虫细胞质中的氧化还原活性 Grx1 的氧化还原功能。我们观察到 Grx1 非常快速地还原含有 GSH 的二硫键(包括氧化的三巯基丁氨酸)( > 5 × 10 m s)。我们还注意到没有 GSH 的二硫键是慢得多的氧化剂,这表明 GSH 分子具有强烈的选择性结合。毫不奇怪,氧化的 Grx1 也被 T(SH)非常快速地还原(4.8 × 10 m s);然而,GSH 介导的还原非常缓慢(39 m s)。催化循环中还原步骤的这种动力学选择性表明,Grx1 优先使用二硫醇机制,在催化循环的氧化半部分在活性位点形成二硫键,然后在还原半部分被 T(SH)快速还原。因此,谷氨酰化底物的还原避免了在缺乏 GSH 还原酶的生物体中 GSSG 的积累。这些发现表明,Grx1 在动基体目硫醇氧化还原代谢的重布线过程中发挥了重要的适应性作用。