Suppr超能文献

软骨组织工程中的胶原蛋白支架及未来发展的相关方法

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development.

作者信息

Irawan Vincent, Sung Tzu-Cheng, Higuchi Akon, Ikoma Toshiyuki

机构信息

1Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan.

2Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan.

出版信息

Tissue Eng Regen Med. 2018 Jul 25;15(6):673-697. doi: 10.1007/s13770-018-0135-9. eCollection 2018 Dec.

Abstract

BACKGROUND

Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications.

METHODS

Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed.

RESULTS

Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer.

CONCLUSION

Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

摘要

背景

软骨组织工程(CTE)旨在通过相关细胞、三维支架和外部信号的组合来获得模仿天然软骨组织的结构。因此,植入“成熟”构建体有望为治疗大面积关节软骨损伤提供解决方案。I型胶原蛋白因其普遍的生物相容性和广泛的临床认可,被广泛用作正在进行临床试验的CTE产品的支架。然而,纯I型胶原蛋白支架的长期性能会受到其有限的软骨生成能力和较差的力学性能的影响。本文旨在为推进I型胶原蛋白支架在CTE应用中提供必要的见解。

方法

首先,讨论I/II型胶原蛋白与CTE相关细胞[即关节软骨细胞(ACs)和间充质干细胞(MSCs)]的相互作用。接下来,强调对支持AC和MSC软骨生成活性至关重要的支架的物理特征和化学成分。描述了通过与天然/合成聚合物混合来优化胶原蛋白支架的尝试。详细介绍了胶原蛋白和结构聚合物以非混合方式组合的混合策略。

结果

I型胶原蛋白足以支持ACs和MSCs的细胞活性;然而,与II型胶原蛋白相比,其软骨生成性能有限。尽管如此,I型胶原蛋白是临床上可行的选择,因为II型胶原蛋白具有致关节炎的潜能。支架的物理特征,如内部结构、孔径、硬度等,对影响ACs和MSCs的分化命运以及分泌细胞外基质至关重要。胶原蛋白可以与天然或合成聚合物混合,以改善最终复合材料的力学和生物活性。然而,由于I型胶原蛋白在苛刻的加工条件下会变性,混合策略的通用性受到限制。混合策略成功地使胶原蛋白支架的生物活性最大化和结构聚合物的机械稳健性最大化。

结论

考虑到胶原蛋白支架先前在物理和组成性质方面的改进以及结构聚合物最近的制造发展,可以得出结论,混合策略是在CTE中进一步推进基于胶原蛋白的支架的一种有前途的方法。

相似文献

1
Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development.
Tissue Eng Regen Med. 2018 Jul 25;15(6):673-697. doi: 10.1007/s13770-018-0135-9. eCollection 2018 Dec.
2
Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.
Acta Biomater. 2017 Sep 15;60:210-219. doi: 10.1016/j.actbio.2017.07.016. Epub 2017 Jul 11.
3
Chondrogenic differentiation of mesenchymal stem cells and its clinical applications.
Yonsei Med J. 2004 Jun 30;45 Suppl:41-7. doi: 10.3349/ymj.2004.45.Suppl.41.
4
Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
Acta Biomater. 2020 Jan 15;102:192-204. doi: 10.1016/j.actbio.2019.11.041. Epub 2019 Nov 26.
5
Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
Acta Biomater. 2018 May;72:167-181. doi: 10.1016/j.actbio.2018.03.047. Epub 2018 Apr 5.
6
Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent.
Clin Orthop Relat Res. 2011 Oct;469(10):2744-53. doi: 10.1007/s11999-011-1869-z.
8
Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration.
J Mech Behav Biomed Mater. 2018 Oct;86:294-304. doi: 10.1016/j.jmbbm.2018.06.040. Epub 2018 Jun 28.
9
In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
Biomaterials. 2005 Dec;26(34):7082-94. doi: 10.1016/j.biomaterials.2005.05.022.

引用本文的文献

3
Chondrogenic potential of PMSCs cultured on chondroitin sulfate/gelatin-modified DBM scaffold.
Bioimpacts. 2024 Oct 27;15:30003. doi: 10.34172/bi.2023.30003. eCollection 2025.
4
Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects.
Bioact Mater. 2024 Oct 11;43:510-549. doi: 10.1016/j.bioactmat.2024.10.001. eCollection 2025 Jan.
5
Dynamic Col-HZ Hydrogel with efficient delivery of bioactivator promotes ECM deposition and cartilage formation.
Mater Today Bio. 2025 Feb 28;31:101623. doi: 10.1016/j.mtbio.2025.101623. eCollection 2025 Apr.
6
Effect of Intra-articular Atelocollagen Injections for Patients With Knee Osteoarthritis: A Retrospective Chart Review.
Cureus. 2024 Sep 8;16(9):e68954. doi: 10.7759/cureus.68954. eCollection 2024 Sep.
10
Advances in tissue engineering and biofabrication for skin modeling.
Bioprinting. 2023 Nov;35. doi: 10.1016/j.bprint.2023.e00306. Epub 2023 Sep 1.

本文引用的文献

1
Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels.
J Mater Chem B. 2017 Jul 14;5(26):5109-5119. doi: 10.1039/c7tb01020f. Epub 2017 Jun 7.
2
Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells.
J Mater Chem B. 2015 Nov 7;3(41):8032-8058. doi: 10.1039/c5tb01276g. Epub 2015 Aug 26.
3
3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness.
Polymers (Basel). 2016 Jul 26;8(8):269. doi: 10.3390/polym8080269.
4
Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes.
Tissue Eng Regen Med. 2017 Jun 30;14(4):383-391. doi: 10.1007/s13770-017-0060-3. eCollection 2017 Aug.
5
Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics.
J Biomech. 2018 Apr 11;71:251-256. doi: 10.1016/j.jbiomech.2018.02.014. Epub 2018 Feb 21.
6
Biomaterials for articular cartilage tissue engineering: Learning from biology.
Acta Biomater. 2018 Jan;65:1-20. doi: 10.1016/j.actbio.2017.11.021. Epub 2017 Nov 8.
8
Stem Cell Therapies for Reversing Vision Loss.
Trends Biotechnol. 2017 Nov;35(11):1102-1117. doi: 10.1016/j.tibtech.2017.06.016. Epub 2017 Jul 24.
9
Biomaterial stiffness determines stem cell fate.
Life Sci. 2017 Jun 1;178:42-48. doi: 10.1016/j.lfs.2017.04.014. Epub 2017 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验