Complex Tissue Regeneration Department, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Polyganics, Rozenburglaan 15A, 9727 DL Groningen, the Netherlands.
Complex Tissue Regeneration Department, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Aachen Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
Acta Biomater. 2020 Jan 15;102:192-204. doi: 10.1016/j.actbio.2019.11.041. Epub 2019 Nov 26.
Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM, represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio < 0 being de-differentiated chondrocytes) was higher than 5. STATEMENT OF SIGNIFICANCE: Tissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (hydrogels), or are too stiff to mimic the elasticity of the native tissue (traditional polyesters). Here, we fabricated 3D fibrous scaffolds via FDM with a biodegradable poly(ester)urethane. The compressive Young`s modulus and elastic limit of the scaffolds can be tuned by designed, mimicking those of the native tissue. The designed scaffolds showed an intrinsic potential to drive the formation of a GAG and collagen II rich ECM, and to drive a stable chondrogenic cell phenotype.
尽管关节软骨组织工程领域的知识不断增加,但功能透明软骨的重建或体外生长仍然是一个未满足的挑战。尽管关节软骨在细胞群体方面很简单,并且没有神经支配和血管化,但由于其细胞外基质(ECM)的特异性,关节软骨具有出色的机械性能,这很难模仿。最重要的是,控制负责沉积这种特殊 ECM 的软骨细胞的分化状态或表型,是实现天然关节软骨再生的一个里程碑。在这项研究中,我们使用具有可设计的机械性能的弹性和可生物降解的聚酯聚氨酯(PEU)制造了具有不同孔径和结构的融合沉积建模(FDM)支架,其机械性能可以通过设计进行调节,并与关节软骨的弹性相匹配。在添加剂制造的 3D 支架中进行细胞培养,超过了金标准微球培养的软骨生成潜力。体外细胞培养研究表明,当在分化或基础培养基中进行体外培养时,弹性(PEU)具有内在的潜力,可以驱动去分化的软骨细胞重新分化,优于微球培养。通过高浓度的 GAG 和纤维状胶原 II 的沉积以及典型软骨生成标志物的高表达来评估新组织的形成。此外,通常用于评估软骨细胞分化状态的胶原 II/胶原 I 比值(比值>1 为软骨细胞,比值<0 为去分化的软骨细胞)高于 5。
关节软骨组织工程需要能够驱动沉积一致且具有代表性的关节软骨 ECM 的材料支架。迄今为止探索的材料具有低机械性能(水凝胶),或者太硬而无法模拟天然组织的弹性(传统聚酯)。在这里,我们通过 FDM 制造了具有生物降解性的聚酯聚氨酯 3D 纤维支架。支架的压缩杨氏模量和弹性极限可以通过设计进行调节,模仿天然组织的特性。设计的支架具有内在的潜力,可以驱动 GAG 和胶原 II 丰富的 ECM 的形成,并驱动稳定的软骨细胞表型。