Suppr超能文献

线粒体功能障碍:肺动脉高压的代谢驱动因素。

Mitochondrial Dysfunction: Metabolic Drivers of Pulmonary Hypertension.

机构信息

Department of Anesthesiology, Duke University Medical Centers, Durham, North Carolina.

Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, Colorado.

出版信息

Antioxid Redox Signal. 2019 Oct 20;31(12):843-857. doi: 10.1089/ars.2018.7705. Epub 2019 Feb 25.

Abstract

Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling and lung vasculopathy. The disease displays progressive dyspnea, pulmonary artery uncoupling and right ventricular (RV) dysfunction. The overall survival rate is ranging from 28-72%. The molecular events that promote the development of PH are complex and incompletely understood. Metabolic impairment has been proposed to contribute to the pathophysiology of PH with evidence for mitochondrial dysfunction involving the electron transport chain proteins, antioxidant enzymes, apoptosis regulators, and mitochondrial quality control. It is vital to characterize the mechanisms by which mitochondrial dysfunction contribute to PH pathogenesis. This review focuses on the currently available publications that supports mitochondrial mechanisms in PH pathophysiology. Further studies of these metabolic mitochondrial alterations in PH could be viable targets of diagnostic and therapeutic intervention.

摘要

肺动脉高压(PH)是一种以肺血管重构和肺血管病变为特征的进行性疾病。该疾病表现为进行性呼吸困难、肺动脉解偶联和右心室(RV)功能障碍。总生存率在 28-72%之间。促进 PH 发展的分子事件是复杂的,目前还不完全清楚。代谢损伤被认为是 PH 病理生理学的一个原因,有证据表明线粒体功能障碍涉及电子传递链蛋白、抗氧化酶、凋亡调节剂和线粒体质量控制。因此,描述线粒体功能障碍导致 PH 发病机制的机制至关重要。这篇综述重点介绍了目前支持 PH 病理生理学中线粒体机制的可用文献。进一步研究 PH 中的这些代谢性线粒体改变可能成为诊断和治疗干预的可行靶点。

相似文献

1
Mitochondrial Dysfunction: Metabolic Drivers of Pulmonary Hypertension.
Antioxid Redox Signal. 2019 Oct 20;31(12):843-857. doi: 10.1089/ars.2018.7705. Epub 2019 Feb 25.
2
Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both.
Am J Physiol Lung Cell Mol Physiol. 2018 May 1;314(5):L782-L796. doi: 10.1152/ajplung.00331.2017. Epub 2018 Jan 18.
3
Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming.
Antioxid Redox Signal. 2018 Jan 20;28(3):230-250. doi: 10.1089/ars.2017.7217. Epub 2017 Aug 14.
4
Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia.
Arterioscler Thromb Vasc Biol. 2015 May;35(5):1166-78. doi: 10.1161/ATVBAHA.114.304865. Epub 2015 Mar 26.
5
Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains.
J Clin Invest. 2018 Aug 31;128(9):3704-3715. doi: 10.1172/JCI120847. Epub 2018 Aug 6.
6
Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension.
Am J Respir Cell Mol Biol. 2016 Jul;55(1):47-57. doi: 10.1165/rcmb.2015-0142OC.
7
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension.
Adv Exp Med Biol. 2017;967:241-260. doi: 10.1007/978-3-319-63245-2_14.
9
The metabolic theory of pulmonary arterial hypertension.
Circ Res. 2014 Jun 20;115(1):148-64. doi: 10.1161/CIRCRESAHA.115.301130.
10
Pulmonary hypertension: pathophysiology and signaling pathways.
Handb Exp Pharmacol. 2013;218:31-58. doi: 10.1007/978-3-642-38664-0_2.

引用本文的文献

3
Mitochondrial fission produces a Warburg effect via the oxidative inhibition of prolyl hydroxylase domain-2.
Redox Biol. 2025 Apr;81:103529. doi: 10.1016/j.redox.2025.103529. Epub 2025 Feb 4.
4
The mitochondrial redistribution of ENOS is regulated by AKT1 and dimer status.
Nitric Oxide. 2024 Nov 1;152:90-100. doi: 10.1016/j.niox.2024.09.009. Epub 2024 Sep 25.
5
Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis.
Mol Cell Biochem. 2025 Mar;480(3):1407-1429. doi: 10.1007/s11010-024-05096-9. Epub 2024 Sep 10.
7
Pulmonary hypertension and the potential of 'drug' repurposing: A case for African medicinal plants.
Afr J Thorac Crit Care Med. 2024 Jul 4;30(2):e1352. doi: 10.7196/AJTCCM.2024.v30i2.1352. eCollection 2024.

本文引用的文献

1
Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease.
J Cell Physiol. 2019 Jun;234(6):8122-8133. doi: 10.1002/jcp.27597. Epub 2018 Nov 11.
2
Advances in medical therapy for pulmonary arterial hypertension.
Curr Opin Cardiol. 2019 Jan;34(1):98-103. doi: 10.1097/HCO.0000000000000583.
4
Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains.
J Clin Invest. 2018 Aug 31;128(9):3704-3715. doi: 10.1172/JCI120847. Epub 2018 Aug 6.
6
Association of Early Inhaled Nitric Oxide With the Survival of Preterm Neonates With Pulmonary Hypoplasia.
JAMA Pediatr. 2018 Jul 2;172(7):e180761. doi: 10.1001/jamapediatrics.2018.0761.
10
Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations.
Cell Metab. 2018 May 1;27(5):1007-1025.e5. doi: 10.1016/j.cmet.2018.03.002. Epub 2018 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验