Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
Mol Psychiatry. 2020 Jul;25(7):1420-1429. doi: 10.1038/s41380-018-0336-6. Epub 2019 Jan 9.
Although a genetic basis of depression has been well established in twin studies, identification of genome-wide significant loci has been difficult. We hypothesized that bivariate analyses of findings from a meta-analysis of genome-wide association studies (meta-GWASs) of the broad depression phenotype with those from meta-GWASs of self-reported and recurrent major depressive disorder (MDD), bipolar disorder and schizophrenia would enhance statistical power to identify novel genetic loci for depression. LD score regression analyses were first used to estimate the genetic correlations of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia. Then, we performed four bivariate GWAS analyses. The genetic correlations (r ± SE) of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia were 0.79 ± 0.07, 0.24 ± 0.08, 0.53 ± 0.09 and 0.57 ± 0.05, respectively. From a total of 20 independent genome-wide significant loci, 13 loci replicated of which 8 were novel for depression. These were MUC21 for the broad depression phenotype with self-reported MDD and ZNF804A, MIR3143, PSORS1C2, STK19, SPATA31D1, RTN1 and TCF4 for the broad depression phenotype with schizophrenia. Post-GWAS functional analyses of these loci revealed their potential biological involvement in psychiatric disorders. Our results emphasize the genetic similarities among different psychiatric disorders and indicate that cross-disorder analyses may be the best way forward to accelerate gene finding for depression, or psychiatric disorders in general.
尽管双胞胎研究已经充分证实了抑郁症的遗传基础,但全基因组范围内显著基因座的鉴定一直很困难。我们假设,对广泛抑郁症表型的全基因组关联研究(Meta-GWAS)与自我报告和复发性重度抑郁症(MDD)、双相情感障碍和精神分裂症的 Meta-GWAS 结果的双变量分析,将增强识别抑郁症新遗传基因座的统计能力。首先使用 LD 得分回归分析来估计广泛抑郁症与自我报告 MDD、复发性 MDD、双相情感障碍和精神分裂症的遗传相关性。然后,我们进行了四项双变量 GWAS 分析。广泛抑郁症与自我报告 MDD、复发性 MDD、双相情感障碍和精神分裂症的遗传相关性(r ± SE)分别为 0.79 ± 0.07、0.24 ± 0.08、0.53 ± 0.09 和 0.57 ± 0.05。在总共 20 个独立的全基因组范围内显著的基因座中,有 13 个基因座与复发性 MDD 相关,其中 8 个是与抑郁症相关的新基因座。这些基因座包括 MUC21 与自我报告的 MDD 相关的广泛抑郁症表型,ZNF804A、MIR3143、PSORS1C2、STK19、SPATA31D1、RTN1 和 TCF4 与精神分裂症相关的广泛抑郁症表型。这些基因座的后 GWAS 功能分析表明它们可能与精神疾病的生物学有关。我们的研究结果强调了不同精神疾病之间的遗传相似性,并表明跨疾病分析可能是加速寻找抑郁症或一般精神疾病基因的最佳途径。