Suppr超能文献

嵌合激活受体表达的自然杀伤细胞消除髓系抑制细胞并挽救针对实体瘤的嵌合抗原受体 T 细胞活性受损。

NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors.

机构信息

Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, Texas.

Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.

出版信息

Cancer Immunol Res. 2019 Mar;7(3):363-375. doi: 10.1158/2326-6066.CIR-18-0572. Epub 2019 Jan 16.

Abstract

Solid tumors are refractory to cellular immunotherapies in part because they contain suppressive immune effectors such as myeloid-derived suppressor cells (MDSCs) that inhibit cytotoxic lymphocytes. Strategies to reverse the suppressive tumor microenvironment (TME) should also attract and activate immune effectors with antitumor activity. To address this need, we developed gene-modified natural killer (NK) cells bearing a chimeric receptor in which the activating receptor NKG2D is fused to the cytotoxic ζ-chain of the T-cell receptor (NKG2D.ζ). NKG2D.ζ-NK cells target MDSCs, which overexpress NKG2D ligands within the TME. We examined the ability of NKG2D.ζ-NK cells to eliminate MDSCs in a xenograft TME model and improve the antitumor function of tumor-directed chimeric antigen receptor (CAR)-modified T cells. We show that NKG2D.ζ-NK cells are cytotoxic against MDSCs, but spare NKG2D ligand-expressing normal tissues. NKG2D.ζ-NK cells, but not unmodified NK cells, secrete proinflammatory cytokines and chemokines in response to MDSCs at the tumor site and improve infiltration and antitumor activity of subsequently infused CAR-T cells, even in tumors for which an immunosuppressive TME is an impediment to treatment. Unlike endogenous NKG2D, NKG2D.ζ is not susceptible to TME-mediated downmodulation and thus maintains its function even within suppressive microenvironments. As clinical confirmation, NKG2D.ζ-NK cells generated from patients with neuroblastoma killed autologous intratumoral MDSCs capable of suppressing CAR-T function. A combination therapy for solid tumors that includes both NKG2D.ζ-NK cells and CAR-T cells may improve responses over therapies based on CAR-T cells alone.

摘要

实体瘤对细胞免疫疗法有抗性,部分原因是它们含有抑制性免疫效应细胞,如髓系来源的抑制性细胞 (MDSCs),它们抑制细胞毒性淋巴细胞。逆转抑制性肿瘤微环境 (TME) 的策略也应该吸引和激活具有抗肿瘤活性的免疫效应细胞。为了满足这一需求,我们开发了携带嵌合受体的基因修饰自然杀伤 (NK) 细胞,该受体将激活受体 NKG2D 与 T 细胞受体的细胞毒性 ζ 链 (NKG2D.ζ) 融合。NKG2D.ζ-NK 细胞靶向 MDSCs,后者在 TME 中过度表达 NKG2D 配体。我们研究了 NKG2D.ζ-NK 细胞在异种移植 TME 模型中消除 MDSCs 的能力,并改善肿瘤定向嵌合抗原受体 (CAR) 修饰 T 细胞的抗肿瘤功能。我们表明,NKG2D.ζ-NK 细胞对 MDSCs 具有细胞毒性,但对表达 NKG2D 配体的正常组织无毒性。NKG2D.ζ-NK 细胞,但不是未经修饰的 NK 细胞,会在肿瘤部位对 MDSCs 产生反应,分泌促炎细胞因子和趋化因子,并改善随后输注的 CAR-T 细胞的浸润和抗肿瘤活性,即使在免疫抑制性 TME 是治疗障碍的肿瘤也是如此。与内源性 NKG2D 不同,NKG2D.ζ 不易受到 TME 介导的下调,因此即使在抑制性微环境中也能保持其功能。作为临床验证,从神经母细胞瘤患者中产生的 NKG2D.ζ-NK 细胞杀死了能够抑制 CAR-T 功能的自体肿瘤内 MDSCs。包含 NKG2D.ζ-NK 细胞和 CAR-T 细胞的实体瘤联合治疗可能会改善仅基于 CAR-T 细胞的治疗的反应。

相似文献

1
NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors.
Cancer Immunol Res. 2019 Mar;7(3):363-375. doi: 10.1158/2326-6066.CIR-18-0572. Epub 2019 Jan 16.
3
Ammonia Suppresses the Antitumor Activity of Natural Killer Cells and T Cells by Decreasing Mature Perforin.
Cancer Res. 2025 Jul 2;85(13):2448-2467. doi: 10.1158/0008-5472.CAN-24-0749.
4
Robo1 CAR-NK92 and radiotherapy exert synergistic efficacy in solid tumors.
J Transl Med. 2025 Jul 1;23(1):720. doi: 10.1186/s12967-025-06753-3.
6
CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy.
J Cancer Res Clin Oncol. 2019 May;145(5):1179-1190. doi: 10.1007/s00432-019-02865-8. Epub 2019 Feb 18.
7
Precision targeting of rhabdomyosarcoma by combining primary CAR NK cells and radiotherapy.
J Immunother Cancer. 2025 Jul 7;13(7):e011330. doi: 10.1136/jitc-2024-011330.
8
Designs of NKG2D-based immunotherapeutics for cancer.
Front Immunol. 2025 Jun 19;16:1557644. doi: 10.3389/fimmu.2025.1557644. eCollection 2025.

引用本文的文献

1
Adoptive cell therapy for cancer: combination strategies and biomarkers.
Front Immunol. 2025 Aug 1;16:1603792. doi: 10.3389/fimmu.2025.1603792. eCollection 2025.
2
ULBP2 CAR-T cells enhance gastric cancer immunotherapy by inhibiting CAF activation.
Cell Death Dis. 2025 Aug 8;16(1):597. doi: 10.1038/s41419-025-07905-5.
4
Designs of NKG2D-based immunotherapeutics for cancer.
Front Immunol. 2025 Jun 19;16:1557644. doi: 10.3389/fimmu.2025.1557644. eCollection 2025.
5
Harnessing NKG2D CAR-T cells with radiotherapy: a novel approach for esophageal squamous cell carcinoma treatment.
Front Immunol. 2025 May 29;16:1589379. doi: 10.3389/fimmu.2025.1589379. eCollection 2025.
6
Prospects and applications of NK therapy in the treatment of gliomas (Review).
Oncol Rep. 2025 Aug;54(2). doi: 10.3892/or.2025.8921. Epub 2025 Jun 6.
7
Epstein-Barr virus mRNA vaccine synergizes with NK cells to enhance nasopharyngeal carcinoma eradication in humanized mice.
Mol Ther Oncol. 2025 Apr 24;33(2):200986. doi: 10.1016/j.omton.2025.200986. eCollection 2025 Jun 18.
8
Cell Therapy Using Anti-NKG2A Pretreated Natural Killer Cells in Patients with Hepatocellular Carcinoma.
Adv Pharm Bull. 2024 Dec 30;14(4):918-926. doi: 10.34172/apb.43869. Epub 2024 Dec 5.
9
Flagellin engineering enhances CAR-T cell function by reshaping tumor microenvironment in solid tumors.
J Immunother Cancer. 2025 Apr 5;13(4):e010237. doi: 10.1136/jitc-2024-010237.
10
Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors.
Front Immunol. 2025 Jan 6;15:1489827. doi: 10.3389/fimmu.2024.1489827. eCollection 2024.

本文引用的文献

3
CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma.
Mol Ther. 2017 Sep 6;25(9):2214-2224. doi: 10.1016/j.ymthe.2017.05.012. Epub 2017 Jun 9.
4
Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.
J Immunother Cancer. 2017 Mar 21;5:22. doi: 10.1186/s40425-017-0222-9. eCollection 2017.
5
Engineered T cells: the promise and challenges of cancer immunotherapy.
Nat Rev Cancer. 2016 Aug 23;16(9):566-81. doi: 10.1038/nrc.2016.97.
7
Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab.
Clin Cancer Res. 2016 Nov 15;22(22):5487-5496. doi: 10.1158/1078-0432.CCR-16-0127. Epub 2016 May 16.
8
Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab.
Clin Cancer Res. 2016 Jun 15;22(12):2908-18. doi: 10.1158/1078-0432.CCR-15-2412. Epub 2016 Jan 19.
9
Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.
Cancer Lett. 2016 Sep 28;380(1):253-6. doi: 10.1016/j.canlet.2015.10.022. Epub 2015 Oct 28.
10
Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected.
J Clin Invest. 2015 Sep;125(9):3356-64. doi: 10.1172/JCI80005. Epub 2015 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验