Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Proince, China.
Org Biomol Chem. 2019 Jan 31;17(5):1245-1253. doi: 10.1039/c8ob03143f.
Organometallic reagents, in particular Pd(ii)- and Au(iii)-aryl reagents, have recently emerged as an efficient tool for bioconjugation. However, the detailed mechanism and origins of chemoselectivity are not well established, but are highly desirable from both synthetic and theoretical viewpoints. In this paper, we report that a computational study dealing with the reaction mechanism of Au(iii)-aryl reagents enabled selective cysteine S-arylation of peptides and proteins developed by Maynard and Spokoyny et al. (J. Am. Chem. Soc., 2018, 140, 7065). Our calculation results suggest that the reaction proceeds by a cationic Au(iii)/Au(i) pathway involving elementary steps of (a) binding of the SH residue to the Au(iii) center, (b) deprotonation of the SH residue, and (c) reductive elimination from a key four-coordinate square planar (L)Au(iii)(thiolate)(Ar) (L is a P,N-bidentate ligand) intermediate. Furthermore, the chemoselectivity of S-arylation against arylation of other nucleophilic residues can be rationalized in terms of energy demand of the three elementary steps. For instance, amine N-arylation is more difficult than S-arylation due majorly to the much higher energy required for deprotonation of much more basic N-H bonds than for deprotonation of weakly acidic S-H bonds. Carboxylate O-arylation is challenging due to the high activation energy of reductive elimination from LAu(iii)(carboxylate)(aryl), because carboxylate is much less nucleophilic than thiolate. These results thus identify acidity and nucleophilicity of the residue as two inherent factors for bioconjugation. This study provides a useful and convenient approach for predicting and rationalizing the feasibility and chemoselectivity of related bioconjugation reactions.
有机金属试剂,特别是 Pd(ii)-和 Au(iii)-芳基试剂,最近已成为生物缀合的有效工具。然而,其化学选择性的详细机制和起源尚未得到很好的确立,但从合成和理论的角度来看,这是非常可取的。在本文中,我们报告了一项关于 Au(iii)-芳基试剂反应机制的计算研究,该研究处理了 Maynard 和 Spokoyny 等人开发的用于选择性半胱氨酸 S-芳基化肽和蛋白质的 Au(iii)-芳基试剂(J. Am. Chem. Soc.,2018,140,7065)。我们的计算结果表明,该反应通过涉及以下基本步骤的阳离子 Au(iii)/Au(i)途径进行:(a)SH 残基与 Au(iii)中心的结合,(b)SH 残基的去质子化,以及(c)从关键的四配位平面四方(L)Au(iii)(硫醇盐)(Ar)(L 是一个 P,N-双齿配体)中间体的还原消除。此外,S-芳基化相对于其他亲核残基的芳基化的化学选择性可以根据三个基本步骤的能量需求来合理化。例如,由于胺的 N-芳基化比 S-芳基化需要更高的能量,主要是因为与较弱酸性的 S-H 键相比,N-H 键的碱性更高,所以需要更高的能量。由于从 LAu(iii)(羧酸盐)(芳基)进行还原消除的活化能很高,因此羧酸盐的亲核性比硫醇盐低,因此羧酸盐 O-芳基化具有挑战性。这些结果因此确定了残基的酸度和亲核性作为生物缀合的两个固有因素。本研究为预测和合理化相关生物缀合反应的可行性和化学选择性提供了一种有用且方便的方法。