Suppr超能文献

用于生物分子快速聚乙二醇化的有机金属 -芳基化试剂。

Organometallic -arylation Reagents for Rapid PEGylation of Biomolecules.

机构信息

Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.

California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.

出版信息

Bioconjug Chem. 2022 Aug 17;33(8):1536-1542. doi: 10.1021/acs.bioconjchem.2c00280. Epub 2022 Aug 8.

Abstract

Bioconjugation techniques for biomolecule-polymer conjugation are numerous; however, slow kinetics and steric challenges generally necessitate excess reagents or long reaction times. Organometallic transformations are known to circumvent these issues; yet, harsh reaction conditions, incompatibility in aqueous media, and substrate promiscuity often limit their use in a biological context. The work reported herein demonstrates a facile and benign organometallic Au(III) -arylation approach that enables the synthesis of poly(ethylene glycol) monomethyl ether (mPEG)-protein conjugates with high efficiency. Isolable and bench-stable 2, 5, and 10 kDa mPEG-Au(III) reagents were synthesized via oxidative addition into terminal aryl iodide substituents installed on mPEG substrates with a (Me-DalPhos)Au(I)Cl precursor. Reaction of the isolable mPEG-Au(III) oxidative addition complexes with a cysteine thiol on a biomolecule resulted in facile and selective cysteine arylation chemistry, forging covalent -aryl linkages and affording the mPEG-biomolecule conjugates. Notably, low polymer reagent loadings were used to achieve near quantitative conversion at room temperature in 1 min due to the rapid kinetics and high chemoselectivity of this Au-based bioconjugation approach. Therefore, this work represents an important addition to the protein-polymer conjugation chemical toolbox.

摘要

用于生物分子-聚合物缀合的生物共轭技术有很多;然而,动力学缓慢和空间位阻问题通常需要过量的试剂或较长的反应时间。已知有机金属转化可以避免这些问题;然而,苛刻的反应条件、与水相的不兼容性以及底物的混杂性常常限制了它们在生物环境中的应用。本文报道了一种简便、温和的有机金(III)-芳基化方法,可高效合成聚乙二醇单甲醚(mPEG)-蛋白质缀合物。通过氧化加成到用(Me-DalPhos)Au(I)Cl 前体安装在 mPEG 底物上的末端芳基碘取代基上,可合成可分离和稳定的 2、5 和 10 kDa mPEG-Au(III)试剂。可分离的 mPEG-Au(III) 加成复合物与生物分子上的半胱氨酸巯基反应,导致容易且选择性的半胱氨酸芳基化反应,形成共价 -芳基键,并得到 mPEG-生物分子缀合物。值得注意的是,由于这种基于金的生物缀合方法具有快速的动力学和高化学选择性,因此在室温下仅使用低聚合物试剂负载即可在 1 分钟内实现近乎定量的转化。因此,这项工作是蛋白质-聚合物缀合化学工具箱的重要补充。

相似文献

1
Organometallic -arylation Reagents for Rapid PEGylation of Biomolecules.
Bioconjug Chem. 2022 Aug 17;33(8):1536-1542. doi: 10.1021/acs.bioconjchem.2c00280. Epub 2022 Aug 8.
2
Gold(III) Aryl Complexes as Reagents for Constructing Hybrid Peptide-Based Assemblies via Cysteine -Arylation.
Inorg Chem. 2021 Apr 5;60(7):5054-5062. doi: 10.1021/acs.inorgchem.1c00087. Epub 2021 Mar 19.
3
Mechanism and chemoselectivity origins of bioconjugation of cysteine with Au(iii)-aryl reagents.
Org Biomol Chem. 2019 Jan 31;17(5):1245-1253. doi: 10.1039/c8ob03143f.
4
Organometallic Gold(III) Reagents for Cysteine Arylation.
J Am Chem Soc. 2018 Jun 13;140(23):7065-7069. doi: 10.1021/jacs.8b04115. Epub 2018 May 30.
5
Organometallic Oxidative Addition Complexes for -Arylation of Free Cysteines.
Bioconjug Chem. 2024 Jul 17;35(7):883-889. doi: 10.1021/acs.bioconjchem.4c00222. Epub 2024 Jun 24.
6
Organometallic palladium reagents for cysteine bioconjugation.
Nature. 2015 Oct 29;526(7575):687-91. doi: 10.1038/nature15739.
7
Efficient end-group functionalization and diblock copolymer synthesis Au(III) polymer reagents.
Chem Commun (Camb). 2023 Dec 19;60(1):79-82. doi: 10.1039/d3cc05350d.
8
Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents.
Angew Chem Int Ed Engl. 2021 May 17;60(21):12109-12115. doi: 10.1002/anie.202103180. Epub 2021 Apr 16.
9
Ultrafast Au(III)-Mediated Arylation of Cysteine.
J Am Chem Soc. 2024 May 8;146(18):12365-12374. doi: 10.1021/jacs.3c12170. Epub 2024 Apr 24.
10
Overcoming PEG─Protein Mutual Repulsion to Improve the Efficiency of PEGylation.
Biomacromolecules. 2022 Nov 14;23(11):4948-4956. doi: 10.1021/acs.biomac.2c01192. Epub 2022 Oct 28.

引用本文的文献

1
Heterotelechelic Organometallic PEG Reagents Enable Modular Access to Complex Bioconjugates.
ACS Macro Lett. 2024 Nov 19;13(11):1551-1557. doi: 10.1021/acsmacrolett.4c00588. Epub 2024 Oct 31.
2
Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems.
J Am Chem Soc. 2024 Nov 6;146(44):29989-30003. doi: 10.1021/jacs.4c07110. Epub 2024 Oct 29.
3
Chromophore Optimization in Organometallic Au(III) Cys Arylation of Peptides and Proteins for 266 nm Photoactivation.
Anal Chem. 2024 Sep 10;96(36):14581-14589. doi: 10.1021/acs.analchem.4c03001. Epub 2024 Aug 28.
4
NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification.
Chem Sci. 2024 Jun 14;15(28):10997-11004. doi: 10.1039/d4sc01710b. eCollection 2024 Jul 17.
5
Organometallic Oxidative Addition Complexes for -Arylation of Free Cysteines.
Bioconjug Chem. 2024 Jul 17;35(7):883-889. doi: 10.1021/acs.bioconjchem.4c00222. Epub 2024 Jun 24.
6
Comparison of Cyclic and Linear PEG Conjugates.
Bioconjug Chem. 2024 Jun 19;35(6):744-749. doi: 10.1021/acs.bioconjchem.4c00202. Epub 2024 May 29.
7
Ultrafast Au(III)-Mediated Arylation of Cysteine.
J Am Chem Soc. 2024 May 8;146(18):12365-12374. doi: 10.1021/jacs.3c12170. Epub 2024 Apr 24.
8
Efficient end-group functionalization and diblock copolymer synthesis Au(III) polymer reagents.
Chem Commun (Camb). 2023 Dec 19;60(1):79-82. doi: 10.1039/d3cc05350d.
9
L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au /Au Catalysis.
Angew Chem Int Ed Engl. 2023 Mar 13;62(12):e202218427. doi: 10.1002/anie.202218427. Epub 2023 Feb 14.

本文引用的文献

1
Bioconjugation Using Thiols: Old Chemistry Rediscovered to Connect Polymers with Nature's Building Blocks.
ACS Macro Lett. 2013 Jan 15;2(1):14-18. doi: 10.1021/mz3005814. Epub 2012 Dec 14.
2
Selective Stepwise Arylation of Unprotected Peptides by Pt Complexes.
Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202205368. doi: 10.1002/anie.202205368. Epub 2022 Jun 2.
3
Pd(II)-Mediated C-H Activation for Cysteine Bioconjugation.
Chemistry. 2022 Feb 19;28(11):e202104385. doi: 10.1002/chem.202104385. Epub 2022 Jan 12.
4
A Platform for Site-Specific DNA-Antibody Bioconjugation by Using Benzoylacrylic-Labelled Oligonucleotides.
Angew Chem Int Ed Engl. 2021 Dec 1;60(49):25905-25913. doi: 10.1002/anie.202109713. Epub 2021 Nov 3.
5
Dichloro Butenediamides as Irreversible Site-Selective Protein Conjugation Reagent.
Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23750-23755. doi: 10.1002/anie.202108791. Epub 2021 Sep 29.
6
Tuning Cyclometalated Gold(III) for Cysteine Arylation and Ligand-Directed Bioconjugation.
Inorg Chem. 2021 Oct 4;60(19):14582-14593. doi: 10.1021/acs.inorgchem.1c01517. Epub 2021 Aug 17.
7
Chemoselective Copper-Mediated Modification of Selenocysteines in Peptides and Proteins.
J Am Chem Soc. 2021 Aug 18;143(32):12817-12824. doi: 10.1021/jacs.1c06101. Epub 2021 Aug 4.
9
Cysteine-Based Coupling: Challenges and Solutions.
Bioconjug Chem. 2021 Aug 18;32(8):1525-1534. doi: 10.1021/acs.bioconjchem.1c00213. Epub 2021 Jun 9.
10
An Organometallic Strategy for Cysteine Borylation.
J Am Chem Soc. 2021 Jun 16;143(23):8661-8668. doi: 10.1021/jacs.1c02206. Epub 2021 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验