Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.
California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.
Bioconjug Chem. 2022 Aug 17;33(8):1536-1542. doi: 10.1021/acs.bioconjchem.2c00280. Epub 2022 Aug 8.
Bioconjugation techniques for biomolecule-polymer conjugation are numerous; however, slow kinetics and steric challenges generally necessitate excess reagents or long reaction times. Organometallic transformations are known to circumvent these issues; yet, harsh reaction conditions, incompatibility in aqueous media, and substrate promiscuity often limit their use in a biological context. The work reported herein demonstrates a facile and benign organometallic Au(III) -arylation approach that enables the synthesis of poly(ethylene glycol) monomethyl ether (mPEG)-protein conjugates with high efficiency. Isolable and bench-stable 2, 5, and 10 kDa mPEG-Au(III) reagents were synthesized via oxidative addition into terminal aryl iodide substituents installed on mPEG substrates with a (Me-DalPhos)Au(I)Cl precursor. Reaction of the isolable mPEG-Au(III) oxidative addition complexes with a cysteine thiol on a biomolecule resulted in facile and selective cysteine arylation chemistry, forging covalent -aryl linkages and affording the mPEG-biomolecule conjugates. Notably, low polymer reagent loadings were used to achieve near quantitative conversion at room temperature in 1 min due to the rapid kinetics and high chemoselectivity of this Au-based bioconjugation approach. Therefore, this work represents an important addition to the protein-polymer conjugation chemical toolbox.
用于生物分子-聚合物缀合的生物共轭技术有很多;然而,动力学缓慢和空间位阻问题通常需要过量的试剂或较长的反应时间。已知有机金属转化可以避免这些问题;然而,苛刻的反应条件、与水相的不兼容性以及底物的混杂性常常限制了它们在生物环境中的应用。本文报道了一种简便、温和的有机金(III)-芳基化方法,可高效合成聚乙二醇单甲醚(mPEG)-蛋白质缀合物。通过氧化加成到用(Me-DalPhos)Au(I)Cl 前体安装在 mPEG 底物上的末端芳基碘取代基上,可合成可分离和稳定的 2、5 和 10 kDa mPEG-Au(III)试剂。可分离的 mPEG-Au(III) 加成复合物与生物分子上的半胱氨酸巯基反应,导致容易且选择性的半胱氨酸芳基化反应,形成共价 -芳基键,并得到 mPEG-生物分子缀合物。值得注意的是,由于这种基于金的生物缀合方法具有快速的动力学和高化学选择性,因此在室温下仅使用低聚合物试剂负载即可在 1 分钟内实现近乎定量的转化。因此,这项工作是蛋白质-聚合物缀合化学工具箱的重要补充。