Suppr超能文献

使用 g:Profiler、GSEA、Cytoscape 和 EnrichmentMap 进行组学数据的通路富集分析和可视化。

Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap.

机构信息

Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

出版信息

Nat Protoc. 2019 Feb;14(2):482-517. doi: 10.1038/s41596-018-0103-9.

Abstract

Pathway enrichment analysis helps researchers gain mechanistic insight into gene lists generated from genome-scale (omics) experiments. This method identifies biological pathways that are enriched in a gene list more than would be expected by chance. We explain the procedures of pathway enrichment analysis and present a practical step-by-step guide to help interpret gene lists resulting from RNA-seq and genome-sequencing experiments. The protocol comprises three major steps: definition of a gene list from omics data, determination of statistically enriched pathways, and visualization and interpretation of the results. We describe how to use this protocol with published examples of differentially expressed genes and mutated cancer genes; however, the principles can be applied to diverse types of omics data. The protocol describes innovative visualization techniques, provides comprehensive background and troubleshooting guidelines, and uses freely available and frequently updated software, including g:Profiler, Gene Set Enrichment Analysis (GSEA), Cytoscape and EnrichmentMap. The complete protocol can be performed in ~4.5 h and is designed for use by biologists with no prior bioinformatics training.

摘要

通路富集分析有助于研究人员深入了解基因组规模(组学)实验生成的基因列表的机制。该方法识别出在基因列表中富集的生物学途径,其丰富程度超出了随机预期。我们解释了通路富集分析的程序,并提供了一个实用的逐步指南,以帮助解释 RNA-seq 和基因组测序实验产生的基因列表。该方案包括三个主要步骤:从组学数据定义基因列表、确定统计学上富集的途径,以及可视化和解释结果。我们描述了如何使用该方案处理差异表达基因和突变癌症基因的已发表示例;然而,这些原则可以应用于各种类型的组学数据。该方案描述了创新的可视化技术,提供了全面的背景和故障排除指南,并使用了免费提供且经常更新的软件,包括 g:Profiler、基因集富集分析(GSEA)、 Cytoscape 和 EnrichmentMap。完整的方案可以在大约 4.5 小时内完成,专为没有事先生物信息学培训的生物学家设计。

相似文献

2
Enrichment map: a network-based method for gene-set enrichment visualization and interpretation.
PLoS One. 2010 Nov 15;5(11):e13984. doi: 10.1371/journal.pone.0013984.
3
Summarizing RNA-Seq Data or Differentially Expressed Genes Using Gene Set, Network, or Pathway Analysis.
Methods Mol Biol. 2021;2284:147-179. doi: 10.1007/978-1-0716-1307-8_9.
4
Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks.
PLoS One. 2024 May 16;19(5):e0302696. doi: 10.1371/journal.pone.0302696. eCollection 2024.
5
Comprehensive functional analysis of large lists of genes and proteins.
J Proteomics. 2018 Jan 16;171:2-10. doi: 10.1016/j.jprot.2017.03.016. Epub 2017 Mar 22.
8
Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map.
Methods Mol Biol. 2011;781:257-77. doi: 10.1007/978-1-61779-276-2_12.
10
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
Mol Med Rep. 2018 Aug;18(2):1538-1550. doi: 10.3892/mmr.2018.9095. Epub 2018 May 29.

引用本文的文献

1
QMR and Patient Blood-Derived Secretome Modulate RPE microRNA Networks Under Oxidative Stress.
Int J Mol Sci. 2025 Sep 4;26(17):8614. doi: 10.3390/ijms26178614.
2
A Multiomic Study of Platelet-Derived Extracellular Vesicles and Impact of Platelet Concentrate Sources.
IET Nanobiotechnol. 2025 Aug 19;2025:8358424. doi: 10.1049/nbt2/8358424. eCollection 2025.
6
Gene-set enrichment analysis and visualization on the web using EnrichmentMap:RNASeq.
Bioinform Adv. 2025 Jul 24;5(1):vbaf178. doi: 10.1093/bioadv/vbaf178. eCollection 2025.
8
Pathway Analysis Interpretation in the Multi-Omic Era.
BioTech (Basel). 2025 Jul 29;14(3):58. doi: 10.3390/biotech14030058.
10
GeneSetCluster 2.0: a comprehensive toolset for summarizing and integrating gene-sets analysis.
BMC Bioinformatics. 2025 Aug 21;26(1):219. doi: 10.1186/s12859-025-06249-3.

本文引用的文献

1
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
2
Quantitative proteomics: challenges and opportunities in basic and applied research.
Nat Protoc. 2017 Jul;12(7):1289-1294. doi: 10.1038/nprot.2017.040. Epub 2017 Jun 1.
3
Using predictive specificity to determine when gene set analysis is biologically meaningful.
Nucleic Acids Res. 2017 Feb 28;45(4):e20. doi: 10.1093/nar/gkw957.
5
KEGG: new perspectives on genomes, pathways, diseases and drugs.
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. doi: 10.1093/nar/gkw1092. Epub 2016 Nov 28.
6
Impact of outdated gene annotations on pathway enrichment analysis.
Nat Methods. 2016 Aug 30;13(9):705-6. doi: 10.1038/nmeth.3963.
7
Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors.
Cell Stem Cell. 2016 Sep 1;19(3):383-96. doi: 10.1016/j.stem.2016.06.008. Epub 2016 Jul 14.
8
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7. doi: 10.1093/nar/gkw377. Epub 2016 May 3.
9
g:Profiler-a web server for functional interpretation of gene lists (2016 update).
Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验