Suppr超能文献

食管腺癌和巴雷特食管中的生物标志物鉴定和反式调控网络分析。

Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.

机构信息

Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.

Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.

出版信息

World J Gastroenterol. 2019 Jan 14;25(2):233-244. doi: 10.3748/wjg.v25.i2.233.

Abstract

BACKGROUND

Esophageal adenocarcinoma (EAC) is an aggressive disease with high mortality and an overall 5-year survival rate of less than 20%. Barrett's esophagus (BE) is the only known precursor of EAC, and patients with BE have a persistent and excessive risk of EAC over time. Individuals with BE are up to 30-125 times more likely to develop EAC than the general population. Thus, early detection of EAC and BE could significantly improve the 5-year survival rate of EAC. Due to the limitations of endoscopic surveillance and the lack of clinical risk stratification strategies, molecular biomarkers should be considered and thoroughly investigated.

AIM

To explore the transcriptome changes in the progression from normal esophagus (NE) to BE and EAC.

METHODS

Two datasets from the Gene Expression Omnibus (GEO) in NCBI Database (https://www.ncbi.nlm.nih.gov/geo/) were retrieved and used as a training and a test dataset separately, since NE, BE, and EAC samples were included and the sample sizes were adequate. This study identified differentially expressed genes (DEGs) using the R/Bioconductor project and constructed trans-regulatory networks based on the Transcriptional Regulatory Element Database and Cytoscape software. Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms was identified using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. The diagnostic potential of certain DEGs was assessed in both datasets.

RESULTS

In the GSE1420 dataset, the number of up-regulated DEGs was larger than that of down-regulated DEGs when comparing EAC NE and BE NE. Among these DEGs, five differentially expressed transcription factors (DETFs) displayed the same trend in expression across all the comparison groups. Of these five DETFs, E2F3, FOXA2, and HOXB7 were up-regulated, while PAX9 and TFAP2C were down-regulated. Additionally, the majority of the DEGs in trans-regulatory networks were up-regulated. The intersection of these potential DEGs displayed the same direction of changes in expression when comparing the DEGs in the GSE26886 dataset to the DEGs in trans-regulatory networks above. The receiver operating characteristic curve analysis was performed for both datasets and found that TIMP1 and COL1A1 could discriminate EAC from NE tissue, while REG1A, MMP1, and CA2 could distinguish BE from NE tissue. DAVID annotation indicated that COL1A1 and MMP1 could be potent biomarkers for EAC and BE, respectively, since they participate in the majority of the enriched KEGG and GO terms that are important for inflammation and cancer.

CONCLUSION

After the construction and analyses of the trans-regulatory networks in EAC and BE, the results indicate that COL1A1 and MMP1 could be potential biomarkers for EAC and BE, respectively.

摘要

背景

食管腺癌(EAC)是一种侵袭性疾病,死亡率高,整体 5 年生存率低于 20%。巴雷特食管(BE)是 EAC 唯一已知的前体,随着时间的推移,BE 患者 EAC 的持续和过度风险持续存在。BE 患者患 EAC 的可能性比一般人群高 30-125 倍。因此,早期发现 EAC 和 BE 可以显著提高 EAC 的 5 年生存率。由于内镜监测的局限性和缺乏临床风险分层策略,应该考虑并彻底研究分子生物标志物。

目的

探讨从正常食管(NE)到 BE 和 EAC 进展过程中的转录组变化。

方法

从 NCBI 数据库中的基因表达综合数据库(GEO)中检索了两个数据集,并分别作为训练和测试数据集使用,因为包含了 NE、BE 和 EAC 样本,并且样本量充足。本研究使用 R/Bioconductor 项目识别差异表达基因(DEGs),并基于转录调控元件数据库和 Cytoscape 软件构建转录调控网络。使用数据库注释、可视化和综合发现(DAVID)生物信息学资源来识别京都基因与基因组百科全书(KEGG)和基因本体论(GO)术语的富集。在两个数据集评估了某些 DEGs 的诊断潜力。

结果

在 GSE1420 数据集中,与 EAC 相比,NE 和 BE 相比,NE 上调的 DEGs 数量大于下调的 DEGs。在这些 DEGs 中,五个差异表达转录因子(DETFs)在所有比较组中表现出相同的表达趋势。在这五个 DETFs 中,E2F3、FOXA2 和 HOXB7 上调,而 PAX9 和 TFAP2C 下调。此外,转录调控网络中的大多数 DEGs 上调。比较 GSE26886 数据集中的 DEGs 与上述转录调控网络中的 DEGs 时,这些潜在 DEGs 的交集显示出相同的表达变化方向。对两个数据集进行了接收者操作特征曲线分析,发现 TIMP1 和 COL1A1 可区分 EAC 与 NE 组织,而 REG1A、MMP1 和 CA2 可区分 BE 与 NE 组织。DAVID 注释表明,COL1A1 和 MMP1 分别可能是 EAC 和 BE 的潜在生物标志物,因为它们参与了大多数对炎症和癌症很重要的富集 KEGG 和 GO 术语。

结论

在构建和分析 EAC 和 BE 的转录调控网络后,结果表明,COL1A1 和 MMP1 分别可能是 EAC 和 BE 的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee5/6337015/121b3c284c79/WJG-25-233-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验