Suppr超能文献

外源性单不饱和脂肪酸促进了铁死亡抗性细胞状态。

Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State.

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA.

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Cell Chem Biol. 2019 Mar 21;26(3):420-432.e9. doi: 10.1016/j.chembiol.2018.11.016. Epub 2019 Jan 24.

Abstract

The initiation and execution of cell death can be regulated by various lipids. How the levels of environmental (exogenous) lipids impact cell death sensitivity is not well understood. We find that exogenous monounsaturated fatty acids (MUFAs) potently inhibit the non-apoptotic, iron-dependent, oxidative cell death process of ferroptosis. This protective effect is associated with the suppression of lipid reactive oxygen species (ROS) accumulation at the plasma membrane and decreased levels of phospholipids containing oxidizable polyunsaturated fatty acids. Treatment with exogenous MUFAs reduces the sensitivity of plasma membrane lipids to oxidation over several hours. This effect requires MUFA activation by acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) and is independent of lipid droplet formation. Exogenous MUFAs also protect cells from apoptotic lipotoxicity caused by the accumulation of saturated fatty acids, but in an ACSL3-independent manner. Our work demonstrates that ACSL3-dependent MUFA activation promotes a ferroptosis-resistant cell state.

摘要

细胞死亡的启动和执行可以受到各种脂质的调控。环境(外源性)脂质水平如何影响细胞死亡敏感性尚不清楚。我们发现,外源性单不饱和脂肪酸(MUFAs)强烈抑制非凋亡、铁依赖性、氧化细胞死亡过程的铁死亡。这种保护作用与抑制质膜上脂质活性氧(ROS)的积累以及含有可氧化多不饱和脂肪酸的磷脂水平降低有关。外源性 MUFAs 的处理在数小时内降低了质膜脂质对氧化的敏感性。这种效应需要酰基辅酶 A 合成酶长链家族成员 3(ACSL3)激活 MUFAs,并且不依赖于脂滴形成。外源性 MUFAs 还可以保护细胞免受饱和脂肪酸积累引起的凋亡性脂肪毒性,但不依赖于 ACSL3。我们的工作表明,ACSL3 依赖性 MUFAs 激活促进了铁死亡抵抗的细胞状态。

相似文献

1
Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State.
Cell Chem Biol. 2019 Mar 21;26(3):420-432.e9. doi: 10.1016/j.chembiol.2018.11.016. Epub 2019 Jan 24.
2
GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis.
Proteomics. 2019 Sep;19(18):e1800311. doi: 10.1002/pmic.201800311. Epub 2019 May 31.
3
Therapeutic potential of palmitoleic acid in non-alcoholic fatty liver disease: Targeting ferroptosis and lipid metabolism disorders.
Int Immunopharmacol. 2024 Dec 5;142(Pt A):113025. doi: 10.1016/j.intimp.2024.113025. Epub 2024 Sep 6.
4
Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1.
Nat Commun. 2021 Apr 14;12(1):2244. doi: 10.1038/s41467-021-22471-y.
6
Cis-monounsaturated fatty acids inhibit ferroptosis through downregulation of transferrin receptor 1.
Nutr Res. 2023 Oct;118:29-40. doi: 10.1016/j.nutres.2023.07.002. Epub 2023 Jul 17.
7
A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity.
Proteomics. 2023 Mar;23(6):e2100308. doi: 10.1002/pmic.202100308. Epub 2023 Jan 13.
9
Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy.
Curr Radiopharm. 2024;17(1):14-29. doi: 10.2174/0118744710262369231110065230.
10
Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis.
Cell Chem Biol. 2019 Mar 21;26(3):309-311. doi: 10.1016/j.chembiol.2019.03.001.

引用本文的文献

1
Ferroptosis: biology and role in liver disease.
J Gastroenterol. 2025 Sep 18. doi: 10.1007/s00535-025-02300-5.
3
MAFLD: a ferroptotic disease.
Trends Mol Med. 2025 Sep 9. doi: 10.1016/j.molmed.2025.08.006.
4
Ferroptosis in Cancer and Inflammatory Diseases: Mechanisms and Therapeutic Implications.
MedComm (2020). 2025 Sep 3;6(9):e70349. doi: 10.1002/mco2.70349. eCollection 2025 Sep.
5
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis.
Biomedicines. 2025 Aug 5;13(8):1913. doi: 10.3390/biomedicines13081913.
6
Carnitine Shuttle and Ferroptosis in Cancer.
Antioxidants (Basel). 2025 Aug 8;14(8):972. doi: 10.3390/antiox14080972.
7
Exploring the role of ferroptosis in esophageal cancer: mechanisms and therapeutic implications.
Cell Death Discov. 2025 Aug 25;11(1):405. doi: 10.1038/s41420-025-02696-2.
8
The instrumental role of lipids in governing the sensitivity of multiple myeloma to ferroptosis.
Discov Oncol. 2025 Aug 25;16(1):1612. doi: 10.1007/s12672-025-03444-9.
9
Iron metabolism and ferroptosis in human health and disease.
BMC Biol. 2025 Aug 22;23(1):263. doi: 10.1186/s12915-025-02378-6.
10
Prospects for ferroptosis therapies in cancer.
Nat Cancer. 2025 Aug 18. doi: 10.1038/s43018-025-01037-7.

本文引用的文献

1
Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress.
Cancer Cell. 2018 May 14;33(5):890-904.e5. doi: 10.1016/j.ccell.2018.03.017. Epub 2018 Apr 12.
2
Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis.
ACS Chem Biol. 2018 Apr 20;13(4):1013-1020. doi: 10.1021/acschembio.8b00199. Epub 2018 Mar 13.
3
A Protective Role for Triacylglycerols during Apoptosis.
Biochemistry. 2018 Jan 9;57(1):72-80. doi: 10.1021/acs.biochem.7b00975. Epub 2017 Dec 13.
4
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.
Nature. 2017 Nov 9;551(7679):247-250. doi: 10.1038/nature24297. Epub 2017 Nov 1.
5
Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.
Cell Chem Biol. 2017 Dec 21;24(12):1445-1454.e8. doi: 10.1016/j.chembiol.2017.08.026. Epub 2017 Oct 12.
6
Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease.
Cell. 2017 Oct 5;171(2):273-285. doi: 10.1016/j.cell.2017.09.021.
8
Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.
Nature. 2017 Jul 27;547(7664):453-457. doi: 10.1038/nature23007. Epub 2017 Jul 5.
9
Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells.
Cell Syst. 2017 Jun 28;4(6):600-610.e6. doi: 10.1016/j.cels.2017.05.002. Epub 2017 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验