Suppr超能文献

使用从氟脱氧葡萄糖-正电子发射断层扫描获得的数字脑模型进行统计参数映射分析时计数归一化方法的比较

Comparison of Count Normalization Methods for Statistical Parametric Mapping Analysis Using a Digital Brain Phantom Obtained from Fluorodeoxyglucose-positron Emission Tomography.

作者信息

Win Thet Pe, Hosokai Yoshiyuki, Minagawa Takashi, Muroi Kenzo, Miwa Kenta, Maruyama Ayaka, Yamaguchi Toshiya, Okano Kazuto, Htwe Khin Moh Moh, Saito Haruo

机构信息

International University of Health and Welfare, School of Health Sciences, Department of Radiological Sciences, Japan.

Tohoku University Graduate School of Medicine, Course of Radiological Technology, Diagnostic Image Analysis, Japan.

出版信息

Asia Ocean J Nucl Med Biol. 2019 Winter;7(1):58-70. doi: 10.22038/AOJNMB.2018.11745.

Abstract

OBJECTIVES

Alternative normalization methods were proposed to solve the biased information of SPM in the study of neurodegenerative disease. The objective of this study was to determine the most suitable count normalization method for SPM analysis of a neurodegenerative disease based on the results of different count normalization methods applied on a prepared digital phantom similar to one obtained using fluorodeoxyglucose-positron emission tomography (FDG-PET) data of a brain with a known neurodegenerative condition.

METHODS

Digital brain phantoms, mimicking mild and intermediate neurodegenerative disease conditions, were prepared from the FDG-PET data of 11 healthy subjects. SPM analysis was performed on these simulations using different count normalization methods.

RESULTS

In the slight-decrease phantom simulation, the Yakushev method correctly visualized wider areas of slightly decreased metabolism with the smallest artifacts of increased metabolism. Other count normalization methods were unable to identify this slightly decreases and produced more artifacts. The intermediate-decreased areas were well visualized by all methods. The areas surrounding the grey matter with the slight decreases were not visualized with the GM and VOI count normalization methods but with the Andersson. The Yakushev method well visualized these areas. Artifacts were present in all methods. When the number of reference area extraction was increased, the Andersson method better-captured the areas with decreased metabolism and reduced the artifacts of increased metabolism. In the Yakushev method, increasing the threshold for the reference area extraction reduced such artifacts.

CONCLUSION

The Yakushev method is the most suitable count normalization method for the SPM analysis of neurodegenerative disease.

摘要

目的

在神经退行性疾病研究中,人们提出了替代归一化方法来解决统计参数映射(SPM)的偏差信息问题。本研究的目的是基于对一个类似于使用患有已知神经退行性疾病的大脑的氟代脱氧葡萄糖 - 正电子发射断层扫描(FDG - PET)数据获得的数字模型应用不同计数归一化方法的结果,确定用于神经退行性疾病SPM分析的最合适的计数归一化方法。

方法

从11名健康受试者的FDG - PET数据制备模拟轻度和中度神经退行性疾病状态的数字脑模型。使用不同的计数归一化方法对这些模拟数据进行SPM分析。

结果

在轻度降低模型模拟中,雅库舍夫方法正确地可视化了代谢轻度降低的更广泛区域,且代谢增加的伪影最小。其他计数归一化方法无法识别这种轻度降低,并且产生了更多伪影。所有方法都能很好地可视化中度降低区域。GM和VOI计数归一化方法无法可视化轻度降低区域周围的灰质区域,但安德森方法可以。雅库舍夫方法能很好地可视化这些区域。所有方法均存在伪影。当增加参考区域提取数量时,安德森方法能更好地捕捉代谢降低区域并减少代谢增加产生的伪影。在雅库舍夫方法中,提高参考区域提取的阈值可减少此类伪影。

结论

雅库舍夫方法是神经退行性疾病SPM分析最合适的计数归一化方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验