Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892.
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4508-4517. doi: 10.1073/pnas.1817494116. Epub 2019 Feb 1.
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated mutant and WT cancer cells, suggesting RAF kinases are key oncoeffectors for addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the oncogene and suggest rational target combinations for more effective therapeutic intervention.
致癌突变的小 GTPase KRAS 经常在人类癌症中发现,目前还没有针对这些肿瘤的有效靶向治疗方法。使用组合 siRNA 方法,我们分析了一组突变的结直肠癌和胰腺癌细胞系,以确定它们对代表经典 RAS 效应途径和应激反应途径的 28 个基因节点的依赖性。我们发现 RAF 节点敲低最能区分突变和 WT 癌细胞,表明 RAF 激酶是 KRAS 成瘾的关键致癌效应物。通过分析这些基因节点的所有 376 种两两组合,我们发现靶向 RAF、RAC 和自噬途径的组合可以比单独靶向 RAF 更好地捕捉到依赖性。特别是,致癌效应物激酶 BRAF 和 CRAF 的共缺失,以及自噬 E1 连接酶 ATG7 的缺失,在突变细胞和正常未转化细胞之间产生了最佳的治疗窗口。在突变细胞系中观察到 RAS 效应物依赖性的不同模式,表明在支持 KRAS 成瘾方面,效应物和应激反应途径的利用存在异质性。我们的研究结果揭示了下游信号网络的先前未被认识到的复杂性,并且为更有效的治疗干预提供了合理的靶组合。