Suppr超能文献

基于快速插值的 t-SNE 用于改善单细胞 RNA-seq 数据的可视化。

Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.

机构信息

Applied Mathematics Program, Yale University, New Haven, CT, USA.

Department of Mathematics, Yale University, New Haven, CT, USA.

出版信息

Nat Methods. 2019 Mar;16(3):243-245. doi: 10.1038/s41592-018-0308-4. Epub 2019 Feb 11.

Abstract

t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .

摘要

t 分布随机邻居嵌入 (t-SNE) 广泛用于可视化单细胞 RNA 测序 (scRNA-seq) 数据,但它在大规模数据集上的扩展效果不佳。我们显著加速了 t-SNE,避免了数据下采样的需要,从而可以可视化稀有细胞群体。此外,我们基于一维 t-SNE 实现了 scRNA-seq 的热图样式可视化,以便同时可视化数千个基因的表达模式。软件可在 https://github.com/KlugerLab/FIt-SNEhttps://github.com/KlugerLab/t-SNE-Heatmaps 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a61/6402590/0b726201eff2/nihms-1517258-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验