Suppr超能文献

动态刚性基质通过集体力学信号促进乳腺上皮细胞的恶性转化。

Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling.

机构信息

Material Science Program, University of California, San Diego, La Jolla, CA 92093.

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3502-3507. doi: 10.1073/pnas.1814204116. Epub 2019 Feb 12.

Abstract

Breast cancer development is associated with increasing tissue stiffness over years. To more accurately mimic the onset of gradual matrix stiffening, which is not feasible with conventional static hydrogels, mammary epithelial cells (MECs) were cultured on methacrylated hyaluronic acid hydrogels whose stiffness can be dynamically modulated from "normal" (<150 Pascals) to "malignant" (>3,000 Pascals) via two-stage polymerization. MECs form and remain as spheroids, but begin to lose epithelial characteristics and gain mesenchymal morphology upon matrix stiffening. However, both the degree of matrix stiffening and culture time before stiffening play important roles in regulating this conversion as, in both cases, a subset of mammary spheroids remained insensitive to local matrix stiffness. This conversion depended neither on colony size nor cell density, and MECs did not exhibit "memory" of prior niche when serially cultured through cycles of compliant and stiff matrices. Instead, the transcription factor Twist1, transforming growth factor β (TGFβ), and YAP activation appeared to modulate stiffness-mediated signaling; when stiffness-mediated signals were blocked, collective MEC phenotypes were reduced in favor of single MECs migrating away from spheroids. These data indicate a more complex interplay of time-dependent stiffness signaling, spheroid structure, and soluble cues that regulates MEC plasticity than suggested by previous models.

摘要

乳腺癌的发展伴随着组织硬度多年来的逐渐增加。为了更准确地模拟基质逐渐变硬的起始,这在传统的静态水凝胶中是不可行的,因此将乳腺上皮细胞 (MEC) 培养在甲基丙烯酰化透明质酸水凝胶上,其硬度可以通过两步聚合从“正常”(<150 帕斯卡)动态调节到“恶性”(>3000 帕斯卡)。MEC 形成并保持为球体,但在基质变硬时开始失去上皮特征并获得间充质形态。然而,基质变硬的程度和变硬前的培养时间都对调节这种转化起着重要作用,因为在这两种情况下,一部分乳腺球体仍然对局部基质硬度不敏感。这种转化既不依赖于集落大小也不依赖于细胞密度,并且 MEC 在通过顺应性和刚性基质的循环连续培养时不会表现出对先前小生境的“记忆”。相反,转录因子 Twist1、转化生长因子 β(TGFβ)和 YAP 激活似乎调节了刚度介导的信号;当刚度介导的信号被阻断时,集体 MEC 表型减少,有利于单个 MEC 从球体迁移。这些数据表明,时间依赖性刚度信号、球体结构和可溶性线索之间的相互作用比以前的模型所表明的更为复杂,调节着 MEC 的可塑性。

相似文献

1
Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3502-3507. doi: 10.1073/pnas.1814204116. Epub 2019 Feb 12.
2
TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids.
Endocr Relat Cancer. 2016 Mar;23(3):147-59. doi: 10.1530/ERC-15-0383. Epub 2015 Dec 8.
4
H-Ras Transformation of Mammary Epithelial Cells Induces ERK-Mediated Spreading on Low Stiffness Matrix.
Adv Healthc Mater. 2020 Apr;9(8):e1901366. doi: 10.1002/adhm.201901366. Epub 2020 Jan 17.
5
Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex.
Dev Cell. 2020 Aug 10;54(3):302-316.e7. doi: 10.1016/j.devcel.2020.05.031. Epub 2020 Jun 22.
6
Extracellular Matrix Stiffening Induces a Malignant Phenotypic Transition in Breast Epithelial Cells.
Cell Mol Bioeng. 2016 Oct 19;10(1):114-123. doi: 10.1007/s12195-016-0468-1. eCollection 2017 Feb.
8
Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
Acta Biomater. 2019 Jan 1;83:221-232. doi: 10.1016/j.actbio.2018.11.010. Epub 2018 Nov 7.
9
Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments.
Biomaterials. 2016 Oct;103:314-323. doi: 10.1016/j.biomaterials.2016.06.061. Epub 2016 Jun 29.
10
3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK.
Adv Biosyst. 2019 Sep;3(9):e1900128. doi: 10.1002/adbi.201900128. Epub 2019 Jul 24.

引用本文的文献

1
Matrix Stiffness Regulates TGFβ1-Induced αSMA Expression via a G9a-LATS-YAP Signaling Cascade.
FASEB Bioadv. 2025 Jul 14;7(7):e70035. doi: 10.1096/fba.2025-00117. eCollection 2025 Jul.
3
The balance between N1 and N2 neutrophils implications for breast cancer immunotherapy: a narrative review.
Ann Med Surg (Lond). 2025 May 12;87(6):3682-3690. doi: 10.1097/MS9.0000000000003361. eCollection 2025 Jun.
4
Matrix stiffness-driven cancer progression and the targeted therapeutic strategy.
Mechanobiol Med. 2023 Aug 3;1(2):100013. doi: 10.1016/j.mbm.2023.100013. eCollection 2023 Dec.
6
Softness or Stiffness What Contributes to Cancer and Cancer Metastasis?
Cells. 2025 Apr 12;14(8):584. doi: 10.3390/cells14080584.
7
Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy.
Stem Cell Res Ther. 2025 Mar 31;16(1):159. doi: 10.1186/s13287-025-04249-x.
8
Full-thickness cervix reconstruction via collagen scaffolds in rabbits.
Bioact Mater. 2025 Jan 22;47:170-180. doi: 10.1016/j.bioactmat.2025.01.015. eCollection 2025 May.
9
Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer.
Bioeng Transl Med. 2024 Jul 31;10(1):e10698. doi: 10.1002/btm2.10698. eCollection 2025 Jan.
10
Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles.
Clin Transl Oncol. 2024 Dec 18. doi: 10.1007/s12094-024-03793-x.

本文引用的文献

1
Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.
Cancer Res. 2017 Nov 15;77(22):6179-6189. doi: 10.1158/0008-5472.CAN-17-0569. Epub 2017 Sep 28.
2
Mechanobiology of YAP and TAZ in physiology and disease.
Nat Rev Mol Cell Biol. 2017 Dec;18(12):758-770. doi: 10.1038/nrm.2017.87. Epub 2017 Sep 27.
3
Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory.
Biomaterials. 2017 Nov;146:146-155. doi: 10.1016/j.biomaterials.2017.09.012. Epub 2017 Sep 8.
4
Mechanically patterned neuromuscular junctions-in-a-dish have improved functional maturation.
Mol Biol Cell. 2017 Jul 7;28(14):1950-1958. doi: 10.1091/mbc.E17-01-0046. Epub 2017 May 11.
6
Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel.
J Biomech Eng. 2016 Feb;138(2):021003. doi: 10.1115/1.4032429.
7
Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma.
Mol Cancer Res. 2016 Mar;14(3):287-95. doi: 10.1158/1541-7786.MCR-15-0307. Epub 2015 Dec 2.
8
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验