Suppr超能文献

基于 RNN 的阿尔茨海默病纵向分析诊断。

RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.

机构信息

Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, 200240 China.

Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, 200240 China.; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, China.

出版信息

Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.

Abstract

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and other mental functions. Magnetic resonance images (MRI) have been widely used as an important imaging modality of brain for AD diagnosis and monitoring the disease progression. The longitudinal analysis of sequential MRIs is important to model and measure the progression of the disease along the time axis for more accurate diagnosis. Most existing methods extracted the features capturing the morphological abnormalities of brain and their longitudinal changes using MRIs and then designed a classifier to discriminate different groups. However, these methods have several limitations. First, since the feature extraction and classifier model are independent, the extracted features may not capture the full characteristics of brain abnormalities related to AD. Second, longitudinal MR images may be missing at some time points for some subjects, which results in difficulties for extraction of consistent features for longitudinal analysis. In this paper, we present a classification framework based on combination of convolutional and recurrent neural networks for longitudinal analysis of structural MR images in AD diagnosis. First, Convolutional Neural Networks (CNN) is constructed to learn the spatial features of MR images for the classification task. After that, recurrent Neural Networks (RNN) with cascaded three bidirectional gated recurrent units (BGRU) layers is constructed on the outputs of CNN at multiple time points for extracting the longitudinal features for AD classification. Instead of independently performing feature extraction and classifier training, the proposed method jointly learns the spatial and longitudinal features and disease classifier, which can achieve optimal performance. In addition, the proposed method can model the longitudinal analysis using RNN from the imaging data at various time points. Our method is evaluated with the longitudinal T1-weighted MR images of 830 participants including 198 AD, 403 mild cognitive impairment (MCI), and 229 normal controls (NC) subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves classification accuracy of 91.33% for AD vs. NC and 71.71% for pMCI vs. sMCI, demonstrating the promising performance for longitudinal MR image analysis.

摘要

阿尔茨海默病(AD)是一种不可逆的神经退行性疾病,其认知和其他精神功能逐渐受损。磁共振成像(MRI)已广泛用作 AD 诊断和监测疾病进展的重要脑成像方式。对连续 MRI 进行纵向分析对于对疾病进行建模并沿时间轴测量其进展非常重要,以便更准确地诊断。大多数现有的方法都使用 MRI 提取捕捉大脑形态异常及其纵向变化的特征,然后设计分类器来区分不同的组。但是,这些方法存在一些局限性。首先,由于特征提取和分类器模型是独立的,因此提取的特征可能无法捕获与 AD 相关的大脑异常的全部特征。其次,由于某些受试者在某些时间点的纵向 MRI 可能会丢失,因此对于纵向分析,很难提取一致的特征。在本文中,我们提出了一种基于卷积和循环神经网络相结合的分类框架,用于 AD 诊断中的结构 MRI 的纵向分析。首先,构建卷积神经网络(CNN)以学习分类任务的 MRI 空间特征。之后,在 CNN 的多个时间点的输出上构建具有级联的三个双向门控循环单元(BGRU)层的循环神经网络(RNN),以提取用于 AD 分类的纵向特征。与独立进行特征提取和分类器训练不同,该方法联合学习空间和纵向特征以及疾病分类器,从而可以实现最佳性能。此外,该方法可以使用来自各个时间点的成像数据使用 RNN 对纵向分析进行建模。我们的方法使用来自阿尔茨海默氏病神经影像学倡议(ADNI)数据库的 830 名参与者的纵向 T1 加权 MRI 进行了评估,其中包括 198 名 AD,403 名轻度认知障碍(MCI)和 229 名正常对照(NC)。实验结果表明,该方法在 AD 与 NC 之间的分类准确率为 91.33%,在 pMCI 与 sMCI 之间的分类准确率为 71.71%,表明其在纵向 MR 图像分析方面具有良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验