Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.
State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
FASEB J. 2019 May;33(5):6378-6389. doi: 10.1096/fj.201802187R. Epub 2019 Feb 18.
Central ischemic necrosis is one of the biggest obstacles in the clinical application of traditional tissue-engineered bone (TEB) in critical-sized bone defect regeneration. Because of its ability to promote vascular invasion, endochondral ossification-based TEB has been applied for bone defect regeneration. However, inadequate chondrocyte hypertrophy can hinder vascular invasion and matrix mineralization during endochondral ossification. In light of recent studies suggesting that ceria nanoparticles (CNPs) improve the blood vessel distribution within TEB, we modified TEB scaffold surfaces with CNPs and investigated the effect and mechanism of CNPs on endochondral ossification-based bone regeneration. The CNPs used in this study were synthesized by the microemulsion method and modified with alendronate-anchored polyethylene glycol 600. We showed that CNPs accelerated new bone formation and enhanced endochondral ossification-based bone regeneration in both a subcutaneous ectopic osteogenesis model and a mouse model of critical-sized bone defects. Mechanistically, CNPs significantly promoted endochondral ossification-based bone regeneration by ensuring sufficient hypertrophic differentiation the activation of the RNA helicase, DEAH (Asp-Glu-Ala-His) box helicase 15, and its downstream target, p38 MAPK. These results suggested that CNPs could be applied as a biomaterial to improve the efficacy of endochondral ossification-based bone regeneration in critical-sized bone defects.-Li, J., Kang, F., Gong, X., Bai, Y., Dai, J., Zhao, C., Dou, C., Cao, Z., Liang, M., Dong, R., Jiang, H., Yang, X., Dong, S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs DHX15 activation.
中心性缺血性坏死是传统组织工程骨(TEB)在临界尺寸骨缺损再生临床应用中的最大障碍之一。由于其促进血管入侵的能力,基于软骨内骨化的 TEB 已被应用于骨缺损再生。然而,软骨细胞肥大不足会阻碍软骨内骨化过程中的血管入侵和基质矿化。鉴于最近的研究表明,CeO2 纳米颗粒(CNPs)可改善 TEB 内的血管分布,我们用 CNPs 对 TEB 支架表面进行了修饰,并研究了 CNPs 对基于软骨内骨化的骨再生的作用和机制。本研究中使用的 CNPs 是通过微乳液法合成的,并通过与锚定在 alendronate 上的聚乙二醇 600 进行了修饰。我们表明,CNPs 加速了皮下异位成骨模型和临界尺寸骨缺损小鼠模型中的新骨形成,并增强了基于软骨内骨化的骨再生。从机制上讲,CNPs 通过确保充分的肥大分化,激活 RNA 解旋酶 DEAH(Asp-Glu-Ala-His)盒解旋酶 15 及其下游靶标 p38 MAPK,显著促进了基于软骨内骨化的骨再生。这些结果表明,CNPs 可用作生物材料来提高基于软骨内骨化的临界尺寸骨缺损再生的疗效。-李,J.,康,F.,龚,X.,白,Y.,戴,J.,赵,C.,窦,C.,曹,Z.,梁,M.,董,R.,蒋,H.,杨,X.,董,S. CeO2 纳米颗粒通过促进 BMSCs 的肥大分化和 DHX15 的激活来增强基于软骨内骨化的临界尺寸骨缺损再生。