Suppr超能文献

可穿戴式生物传感器在医疗保健监测中的应用。

Wearable biosensors for healthcare monitoring.

机构信息

Department of Nanoengineering, University of California, San Diego, La Jolla, California, USA.

出版信息

Nat Biotechnol. 2019 Apr;37(4):389-406. doi: 10.1038/s41587-019-0045-y. Epub 2019 Feb 25.

Abstract

Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation. Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability. An expanded set of on-body bioaffinity assays and more sensing strategies are needed to make more biomarkers accessible to monitoring. Large-cohort validation studies of wearable biosensor performance will be needed to underpin clinical acceptance. Accurate and reliable real-time sensing of physiological information using wearable biosensor technologies would have a broad impact on our daily lives.

摘要

可穿戴生物传感器因其能够通过对生物流体(如汗液、眼泪、唾液和间质液)中的生化标志物进行动态、非侵入性测量,提供连续的实时生理信息而引起了广泛关注。最近的研究重点集中在电化学生物传感器和光学生物传感器上,同时也在无创监测生物标志物方面取得了进展,包括代谢物、细菌和激素。已经将多重生物传感、微流采样和传输系统集成、微型化,并与柔性材料结合,以提高穿戴舒适性和操作简便性。尽管可穿戴生物传感器具有广阔的应用前景,但需要更好地了解血液和非侵入性生物流体中分析物浓度之间的相关性,以提高其可靠性。需要扩展一系列的体上生物亲和性测定法和更多的传感策略,以便能够监测更多的生物标志物。需要对可穿戴生物传感器性能进行大规模队列验证研究,以支持临床应用。使用可穿戴生物传感器技术进行准确可靠的实时生理信息传感将对我们的日常生活产生广泛影响。

相似文献

1
Wearable biosensors for healthcare monitoring.
Nat Biotechnol. 2019 Apr;37(4):389-406. doi: 10.1038/s41587-019-0045-y. Epub 2019 Feb 25.
2
Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring.
Molecules. 2021 Feb 1;26(3):748. doi: 10.3390/molecules26030748.
3
Accessing analytes in biofluids for peripheral biochemical monitoring.
Nat Biotechnol. 2019 Apr;37(4):407-419. doi: 10.1038/s41587-019-0040-3. Epub 2019 Feb 25.
4
Wearable electrochemical biosensors in North America.
Biosens Bioelectron. 2021 Jan 15;172:112750. doi: 10.1016/j.bios.2020.112750. Epub 2020 Oct 26.
5
Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
Acc Chem Res. 2019 Feb 19;52(2):297-306. doi: 10.1021/acs.accounts.8b00555. Epub 2019 Jan 28.
6
Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics.
Biosensors (Basel). 2020 Dec 15;10(12):205. doi: 10.3390/bios10120205.
8
Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices.
Acc Chem Res. 2018 Nov 20;51(11):2820-2828. doi: 10.1021/acs.accounts.8b00451. Epub 2018 Nov 6.
9
Flexible Electronics toward Wearable Sensing.
Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15.
10
Recent advances in noninvasive flexible and wearable wireless biosensors.
Biosens Bioelectron. 2019 Sep 15;141:111422. doi: 10.1016/j.bios.2019.111422. Epub 2019 Jun 18.

引用本文的文献

1
Mapping Multi-Modal Fatigue in Elite Soccer Through Sweat-Omics Perspectives: A Narrative Review.
Biology (Basel). 2025 Aug 16;14(8):1069. doi: 10.3390/biology14081069.
6
A policy roadmap for sustainable mass-testing.
Health Aff Sch. 2025 Jul 29;3(8):qxaf151. doi: 10.1093/haschl/qxaf151. eCollection 2025 Aug.
9
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes.
Int J Mol Sci. 2025 Aug 4;26(15):7520. doi: 10.3390/ijms26157520.
10
A bioinspired microfluidic wearable sensor for multiday sweat sampling, transport, and metabolic analysis.
Sci Adv. 2025 Aug 15;11(33):eadw9024. doi: 10.1126/sciadv.adw9024. Epub 2025 Aug 13.

本文引用的文献

1
Wearable Electrochemical Alcohol Biosensors.
Curr Opin Electrochem. 2018 Aug;10:126-135. doi: 10.1016/j.coelec.2018.05.014. Epub 2018 May 23.
2
Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform.
Adv Sci (Weinh). 2018 Aug 2;5(10):1800880. doi: 10.1002/advs.201800880. eCollection 2018 Oct.
5
Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.
ACS Nano. 2018 Jun 26;12(6):5452-5462. doi: 10.1021/acsnano.8b00829. Epub 2018 May 17.
6
Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5377-5382. doi: 10.1073/pnas.1719573115. Epub 2018 May 7.
7
Methylxanthine Drug Monitoring with Wearable Sweat Sensors.
Adv Mater. 2018 Jun;30(23):e1707442. doi: 10.1002/adma.201707442. Epub 2018 Apr 16.
8
Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform.
Nat Nanotechnol. 2018 Jun;13(6):504-511. doi: 10.1038/s41565-018-0112-4. Epub 2018 Apr 9.
9
Wearable and flexible electronics for continuous molecular monitoring.
Chem Soc Rev. 2019 Mar 18;48(6):1465-1491. doi: 10.1039/c7cs00730b.
10
Functional, RF-Trilayer Sensors for Tooth-Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption.
Adv Mater. 2018 May;30(18):e1703257. doi: 10.1002/adma.201703257. Epub 2018 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验