Suppr超能文献

从宏基因组数据中挖掘、分析和整合病毒信号。

Mining, analyzing, and integrating viral signals from metagenomic data.

机构信息

Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.

Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.

出版信息

Microbiome. 2019 Mar 19;7(1):42. doi: 10.1186/s40168-019-0657-y.

Abstract

BACKGROUND

Viruses are important components of microbial communities modulating community structure and function; however, only a couple of tools are currently available for phage identification and analysis from metagenomic sequencing data. Here we employed the random forest algorithm to develop VirMiner, a web-based phage contig prediction tool especially sensitive for high-abundances phage contigs, trained and validated by paired metagenomic and phagenomic sequencing data from the human gut flora.

RESULTS

VirMiner achieved 41.06% ± 17.51% sensitivity and 81.91% ± 4.04% specificity in the prediction of phage contigs. In particular, for the high-abundance phage contigs, VirMiner outperformed other tools (VirFinder and VirSorter) with much higher sensitivity (65.23% ± 16.94%) than VirFinder (34.63% ± 17.96%) and VirSorter (18.75% ± 15.23%) at almost the same specificity. Moreover, VirMiner provides the most comprehensive phage analysis pipeline which is comprised of metagenomic raw reads processing, functional annotation, phage contig identification, and phage-host relationship prediction (CRISPR-spacer recognition) and supports two-group comparison when the input (metagenomic sequence data) includes different conditions (e.g., case and control). Application of VirMiner to an independent cohort of human gut metagenomes obtained from individuals treated with antibiotics revealed that 122 KEGG orthology and 118 Pfam groups had significantly differential abundance in the pre-treatment samples compared to samples at the end of antibiotic administration, including clustered regularly interspaced short palindromic repeats (CRISPR), multidrug resistance, and protein transport. The VirMiner webserver is available at http://sbb.hku.hk/VirMiner/ .

CONCLUSIONS

We developed a comprehensive tool for phage prediction and analysis for metagenomic samples. Compared to VirSorter and VirFinder-the most widely used tools-VirMiner is able to capture more high-abundance phage contigs which could play key roles in infecting bacteria and modulating microbial community dynamics.

TRIAL REGISTRATION

The European Union Clinical Trials Register, EudraCT Number: 2013-003378-28 . Registered on 9 April 2014.

摘要

背景

病毒是调节群落结构和功能的微生物群落的重要组成部分;然而,目前只有少数工具可用于从宏基因组测序数据中鉴定和分析噬菌体。在这里,我们采用随机森林算法开发了 VirMiner,这是一种基于网络的噬菌体基因序列预测工具,对高丰度噬菌体基因序列具有特别高的灵敏度,它是通过来自人类肠道菌群的宏基因组和噬菌体基因组测序数据进行训练和验证的。

结果

VirMiner 在预测噬菌体基因序列时,灵敏度为 41.06%±17.51%,特异性为 81.91%±4.04%。特别是对于高丰度的噬菌体基因序列,VirMiner 的灵敏度(65.23%±16.94%)明显高于 VirFinder(34.63%±17.96%)和 VirSorter(18.75%±15.23%),而特异性几乎相同。此外,VirMiner 提供了最全面的噬菌体分析流程,包括宏基因组原始reads 处理、功能注释、噬菌体基因序列鉴定以及噬菌体-宿主关系预测(CRISPR 间隔区识别),并且在输入(宏基因组序列数据)包含不同条件(例如病例和对照)时支持两组比较。将 VirMiner 应用于一组独立的人类肠道宏基因组,这些样本来自接受抗生素治疗的个体,结果表明,与抗生素治疗结束时的样本相比,122 个 KO 同源物和 118 个 Pfam 组在预处理样本中具有显著的差异丰度,包括成簇规律间隔短回文重复(CRISPR)、多药耐药性和蛋白质转运。VirMiner 网络服务器可在 http://sbb.hku.hk/VirMiner/ 访问。

结论

我们开发了一种用于宏基因组样本中噬菌体预测和分析的综合工具。与 VirSorter 和 VirFinder(最常用的工具)相比,VirMiner 能够捕获更多可能在感染细菌和调节微生物群落动态方面发挥关键作用的高丰度噬菌体基因序列。

试验注册

欧洲联盟临床试验注册处,EudraCT 编号:2013-003378-28。注册于 2014 年 4 月 9 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6003/6425642/fab912d2af3c/40168_2019_657_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验